Abstract

This paper focuses on the prediction of daily surface solar radiation maps for Reunion Island by a hybrid approach that combines principal component analysis (PCA), wavelet transform analysis, and artificial neural network (ANN). The daily surface solar radiation over 18 years (1999–2016) from CM SAF (SARAH-E with 0.05 deg × 0.05 deg spatial resolution) is first detrended using the clear sky index. Dimensionality reduction of the detrended dataset is secondly performed through PCA, which results in saving computational time by a factor of eight in comparison to not using PCA. A wavelet transform is thirdly applied onto each of the first 28 principal components (PCs) explaining 95% of the variance. The decomposed nine-wavelet components for each PC are fourthly used as input to an ANN model to perform the prediction of day-ahead surface solar radiation. The predicted decomposed components are finally returned to PCs and clear sky indices, irradiation in the end for re-mapping the surface solar radiation's distribution. It is found that the prediction accuracy is quite satisfying: root mean square error (RMSE) is 30.98 W/m2 and the (1 − RMSE_prediction/RMSE_persistence) is 0.409.

References

1.
Lorenz
,
E.
,
Hurka
,
J.
,
Heinemann
,
D.
, and
Beyer
,
H. G.
,
2009
, “
Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems
,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
,
2
(
1
), pp.
2
10
. 10.1109/JSTARS.2009.2020300
2.
Lorenz
,
E.
,
Remund
,
J.
,
Müller
,
S. C.
,
Traunmüller
,
W.
,
Steinmaurer
,
G.
,
Pozo
,
D.
,
Ruiz-Arias
,
J. A.
,
Fanego
,
V. L.
,
Ramirez
,
L.
,
Romeo
,
M. G.
, and
Kurz
,
C.
,
2009
, “
Benchmarking of Different Approaches to Forecast Solar Irradiance
,”
Proceedings of 24 European Photovoltaic and Solar Energy Conference and Exhibition
,
Hamburg, Germany
,
Sept. 21–25
, pp.
4199
4208
.
3.
Perez
,
R.
, and
Hoff
,
T.
,
2013
,
Solar Energy Forecasting and Resource Assessment
,
J.
Kleissl
, ed.,
Elsevier
,
New York
, pp.
133
148
. doi:10.1016/B978-0-12-397177-7.00006-1
4.
Perez
,
R.
,
Rábago
,
K. R.
,
Trahan
,
M.
,
Rawlings
,
L.
,
Norris
,
B.
,
Hoff
,
T.
,
Putnam
,
M.
, and
Perez
,
M.
,
2016
, “
Achieving Very High PV Penetration—The Need for an Effective Electricity Remuneration Framework and a Central Role for Grid Operations
,”
Energy Policy
,
96
, pp.
27
35
. 10.1016/j.enpol.2016.05.016
5.
Kasten
,
F.
, and
Czeplak
,
G.
,
1980
, “
Solar and Terrestrial Radiation Dependent on the Amount and Type of Cloud
,”
Sol. Energy
,
24
(
2
), pp.
177
189
. 10.1016/0038-092X(80)90391-6
6.
Qian
,
Y.
,
Kaiser
,
D. P.
,
Leung
,
L. R.
, and
Xu
,
M.
,
2006
, “
More Frequent Cloud-Free Sky and Less Surface Solar Radiation in China From 1955 to 2000
,”
Geophys. Res. Lett.
,
33
(
1
), p.
L01812
. 10.1029/2005GL024586
7.
Ruckstuhl
,
C.
,
Philipona
,
R.
,
Behrens
,
K.
,
Collaud Coen
,
M.
,
Dürr
,
B.
,
Heimo
,
A.
,
Mätzler
,
C.
,
Nyeki
,
S.
,
Ohmura
,
A.
,
Vuilleumier
,
L.
, and
Weller
,
M.
,
2008
, “
Aerosol and Cloud Effects on Solar Brightening and the Recent Rapid Warming
,”
Geophys. Res. Lett.
,
35
(
12
), p.
L12608
. 10.1029/2008GL034228
8.
Chiacchio
,
M.
, and
Vitolo
,
R.
,
2012
, “
Effect of Cloud Cover and Atmospheric Circulation Patterns on the Observed Surface Solar Radiation in Europe
,”
J. Geophys. Res.
,
117
(
D18
). 10.1029/2012JD017620
9.
Naud
,
C. M.
,
Rangwala
,
I.
,
Xu
,
M.
, and
Miller
,
R.
,
2015
, “
A Satellite View of the Radiative Impact of Clouds on Surface Downward Fluxes in the Tibetan Plateau
,”
J. Appl. Meteor. Climatol.
,
54
(
2
), pp.
479
493
. 10.1175/JAMC-D-14-0183.1
10.
Badosa
,
J.
,
Haeffelin
,
M.
, and
Chepfer
,
H.
,
2013
, “
Scales of Spatial and Temporal Variation of Solar Irradiance on Reunion Tropical Island
,”
Sol. Energy
,
88
, pp.
42
56
. 10.1016/j.solener.2012.11.007
11.
Badosa
,
J.
,
Haeffelin
,
M.
,
Kalecinski
,
N.
,
Bonnardot
,
F.
, and
Jumaux
,
G.
,
2015
, “
Reliability of Day-Ahead Solar Irradiance Forecasts on Reunion Island Depending on Synoptic Wind and Humidity Conditions
,”
Sol. Energy
,
115
, pp.
306
321
. 10.1016/j.solener.2015.02.039
12.
Hocaoğlu
,
F. O.
,
2011
, “
Stochastic Approach for Daily Solar Radiation Modelling
,”
Sol. Energy
,
85
(
2
), pp.
278
287
. 10.1016/j.solener.2010.12.003
13.
Yang
,
D. Z.
,
Jirutijiaroen
,
P.
, and
Walsh
,
W. M.
,
2011
, “
Hourly Solar Irradiance Time Series Forecasting Using Cloud Cover Index
,”
Sol. Energy
,
86
(
12
), pp.
3531
3543
. 10.1016/j.solener.2012.07.029
14.
Hammer
,
A.
,
Heinemann
,
D.
,
Lorenz
,
E.
, and
Lückehe
,
B.
,
1999
, “
Short-Term Forecasting of Solar Radiation: A Statistical Approach Using Satellite Data
,”
Sol. Energy
,
67
(
1–3
), pp.
139
150
. 10.1016/S0038-092X(00)00038-4
15.
Pedro
,
F. J.
, and
Llanos
,
M. L.
,
2016
, “
Modelling and Forecasting Hourly Global Solar Radiation Using Clustering and Classification Techniques
,”
Sol. Energy
,
135
, pp.
682
691
. 10.1016/j.solener.2016.06.039
16.
Monjoly
,
S.
,
André
,
M.
,
Calif
,
R.
, and
Soubdhan
,
T.
,
2017
, “
Hourly Forecasting of Global Solar Radiation Based on Multiscale Decomposition Methods: A Hybrid Approach
,”
Energy
,
119
, pp.
288
298
. 10.1016/j.energy.2016.11.061
17.
Brisson
,
A.
,
Borgne
,
P. L.
, and
Marsouin
,
A.
,
1999
, “
Development of Algorithms for Surface Solar Irradiance Retrieval at O&SI SAF Low and Mid Latitudes
,” Météo-France/SCEM/CMS O&SI SAF Low and Mid Latitudes.
18.
Gueymard
,
C. A.
, and
Myers
,
D. R.
,
2008
,
Modeling Solar Radiation at the Earth’s Surface
,
V.
Badescu
, ed.,
Springer
,
New York
, pp.
1
27
.
19.
Laszlo
,
I.
,
Ciren
,
P.
,
Liu
,
H. Q.
,
Kondragunta
,
S.
,
Tarpley
,
J. D.
, and
Goldberg
,
M. D.
,
2008
, “
Remote Sensing of Aerosol and Radiation From Geostationary Satellites
,”
Adv. Space Res.
,
41
(
11
), pp.
1882
1893
. 10.1016/j.asr.2007.06.047
20.
Ulgen
,
K.
, and
Hepbasli
,
A.
,
2009
, “
Diffuse Solar Radiation Estimation Models for Turkey’s Big Cities
,”
Energy Convers. Manage.
,
50
(
1
), pp.
149
156
. 10.1016/j.enconman.2008.08.013
21.
Li
,
H.
,
Ma
,
W. B.
,
Wang
,
X. L.
, and
Lian
,
Y. W.
,
2011
, “
Estimating Monthly Average Daily Diffuse Solar Radiation With Multiple Predictors: A Case Study
,”
Renew. Energy
,
36
(
7
), pp.
1944
1948
. 10.1016/j.renene.2011.01.006
22.
Yohanna
,
J. K.
,
Itodo
,
I. N.
, and
Umogbi
,
V. I.
,
2011
, “
A Model for Determining the Global Solar Radiation for Makurdi, Nigeria
,”
Renew. Energy
,
36
(
7
), pp.
1989
1992
. 10.1016/j.renene.2010.12.028
23.
Karakoti
,
I.
,
Das
,
P. K.
, and
Singh
,
S. K.
,
2012
, “
Predicting Monthly Mean Daily Diffuse Radiation for India
,”
Appl. Energy
,
91
(
1
), pp.
412
425
. 10.1016/j.apenergy.2011.10.012
24.
Posselt
,
R.
,
Müller
,
R.
,
Trentmann
,
J.
,
Stöckli
,
R.
, and
Liniger
,
M.
,
2012
, “
Extension of the CM SAF Surface Radiation Climatology Beyond Meteosat First Generation Satellites
,”
12th EMS Annual Meeting & 9th European Conference on Applied Climatology (ECAC)
,
Lodz, Poland
,
Sept. 10–14
.
25.
Kaplanis
,
S.
, and
Kaplani
,
E.
,
2007
, “
A Model to Predict Expected Mean and Stochastic Hourly Global Solar Radiation I(h;nj) Values
,”
Renew. Energy
,
32
(
8
), pp.
1414
1425
. 10.1016/j.renene.2006.06.014
26.
Kaplanis
,
S.
, and
Kaplani
,
E.
,
2010
, “
Stochastic Prediction of Hourly Global Solar Radiation for Patra, Greece
,”
Appl. Energy
,
87
(
12
), pp.
3748
3758
. 10.1016/j.apenergy.2010.06.006
27.
Glasbey
,
C. A.
,
Allcroft
,
D. J.
, and
Paulo
,
M. J.
,
2007
, “
A Latent Gaussian Model for Multivariate Consumption Data
,”
Food Qual. Prefer.
,
18
(
3
), pp.
508
516
. 10.1016/j.foodqual.2006.03.025
28.
Bojanowski
,
J. S.
,
2014
, “
Quantifying Solar Radiation at the Earth Surface With Meteorological and Satellite Data
,” Ph.D. thesis,
University of Twente
,
Enschede
.
29.
Jia
,
B.
,
Xie
,
Z.
,
Dai
,
A.
,
Shi
,
C.
, and
Chen
,
F.
,
2013
, “
Evaluation of Satellite and Reanalysis Products of Downward Surface Solar Radiation Over East Asia: Spatial and Seasonal Variations
,”
J. Geophys. Res.: Atmos.
,
118
(
9
), pp.
3431
3446
. 10.1002/jgrd.50353
30.
Kennedy
,
A. D.
,
Dong
,
X.
,
Xi
,
B.
,
Xie
,
S.
,
Zhang
,
Y.
, and
Chen
,
J.
,
2011
, “
A Comparison of MERRA and NARR Reanalyses With the DOE ARM SGP Data
,”
J. Clim.
,
24
(
17
), pp.
4541
4557
. 10.1175/2011JCLI3978.1
31.
Lohmann
,
S.
,
Schillings
,
C.
,
Mayer
,
B.
, and
Meyer
,
R.
,
2006
, “
Long-Term Variability of Solar Direct and Global Radiation Derived From ISCCP Data and Comparison With Reanalysis Data
,”
Sol. Energy
,
80
(
11
), pp.
1390
1401
. 10.1016/j.solener.2006.03.004
32.
Inman
, and
Headsen
,
R.
,
2012
,
Solar Forecasting Review
,
University of California
,
San Diego, CA
.
33.
Chaturvedi
,
D. K.
, and
Isha
,
I.
,
2016
, “
Solar Power Forecasting: A Review
,”
Int. J. Comput. Appl.
,
145
(
6
), pp.
28
50
.
34.
Mohandes
,
M.
,
Rehman
,
S.
, and
Halawani
,
T. O.
,
1998
, “
Estimation of Global Solar Radiation Using Artificial Neural Networks
,”
Renew. Energy
,
14
(
1–4
), pp.
179
184
. 10.1016/S0960-1481(98)00065-2
35.
Reddy
,
K. S.
, and
Ranjan
,
M.
,
2003
, “
Solar Resource Estimation Using Artificial Neural Networks and Comparison With Other Correlation Models
,”
Energy Convers. Manage.
,
44
(
15
), pp.
2519
2530
. 10.1016/S0196-8904(03)00009-8
36.
Fadare
,
D. A.
,
Irimisose
,
I.
,
Oni
,
A. O.
, and
Falana
,
A.
,
2010
, “
Modelling of Solar Energy Potential in Africa Using an Artificial Neural Network
,”
Am. J. Sci. Ind. Res.
,
1
(
2
), pp.
144
157
. 10.5251/ajsir.2010.1.2.144.157
37.
Priya
,
S. S.
, and
Iqbal
,
M. H.
,
2015
, “
Solar Radiation Prediction Using Artificial Neural Network
,”
Int. J. Comput. Appl.
,
116
(
16
), pp.
28
31
. 10.5120/20425-2741
38.
Gutierrez-Corea
,
F. V.
,
Manso-Callejo
,
M. A.
,
Moreno-Regidor
,
M. P.
, and
Manrique-Sancho
,
M. T.
,
2016
, “
Forecasting Short-Term Solar Irradiance Based on Artificial Neural Networks and Data From Neighboring Meteorological Stations
,”
Sol. Energy
,
134
, pp.
119
131
. 10.1016/j.solener.2016.04.020
39.
Abedinia
,
O.
,
Amjady
,
N.
, and
Ghadimi
,
N.
,
2018
, “
Solar Energy Forecasting Based on Hybrid Neural Network and Improved Metaheuristic Algorithm
,”
Comput. Intell.
,
34
(
1
), pp.
241
260
. 10.1111/coin.12145
40.
Paoli
,
C.
,
Voyant
,
C.
,
Musselli
,
M.
, and
Nivet
,
M.
,
2010
, “
Forecasting of Pre-Processed Daily Solar Radiation Time Series Using Neural Networks
,”
Sol. Energy
,
84
(
12
), pp.
2146
2160
. 10.1016/j.solener.2010.08.011
41.
Huld
,
T.
,
Müller
,
R.
,
Gracia-Amillo
,
A.
,
Pfeifroth
,
U.
, and
Trentmann
,
J.
,
2017
, “
Surface Solar Radiation Data Set—Heliosat, Meteosat-East (SARAH-E)—Edition 1.1
,” Satellite Application Facility on Climate Monitoring.
42.
Praene
,
J. P.
,
David
,
M.
,
Sinama
,
F.
,
Morau
,
D.
, and
Marc
,
O.
,
2012
, “
Renewable Energy: Progressing Towards a Net Zero Energy Island, the Case of Reunion Island
,”
Renew. Sustain. Energy Rev.
,
16
(
1
), pp.
426
442
. 10.1016/j.rser.2011.08.007
43.
Veeran
,
P. K.
, and
Kumar
,
S.
,
1993
, “
Analysis of Monthly Average Daily Global Radiation and Monthly Average Sunshine Duration at Two Tropical Locations
,”
Renew. Energy
,
3
(
8
), pp.
935
939
. 10.1016/0960-1481(93)90054-K
44.
Nalina
,
U.
,
Prema
,
V.
,
Smitha
,
K.
, and
Rao
,
K. U.
,
2014
, “
Multivariate Regression for Prediction of Solar Irradiance
,”
Data Science & Engineering (ICDSE), 2014 International Conference
,
Kochi, India
,
Aug. 26–28
.
45.
Kutty
,
H. A.
,
Masral
,
M. H.
, and
Rajendran
,
P.
,
2015
, “
Regression Model to Predict Global Solar Irradiance in Malaysia
,”
Int. J. Photoenergy
,
2015
. 10.1155/2015/347023
46.
Zhang
,
P.
,
Takano
,
H.
, and
Murata
,
J.
,
2011
, “
Daily Solar Radiation Prediction Based on Wavelet Analysis
,”
SICE Annual Conference
,
Tokyo, Japan
,
Sept. 13–18
, pp.
712
717
.
47.
Huang
,
C.
,
Zhang
,
Z. J.
, and
Bensoussan
,
A.
,
2016
, “
Forecasting of Daily Global Solar Radiation Using Wavelet Transform-Coupled Gaussian Process Regression: Case Study in Spain
,”
2016 IEEE Innovative Smart Grid Technologies-Asia Conference
,
Melbourne, Australia
,
Nov. 28–Dec. 1
, pp.
799
804
.
48.
Teixeira Júnior
,
L. A.
,
de Souza
,
R. M.
,
de Menezes
,
M. L.
,
Cassiano
,
K. M.
,
Pessanha
,
J. F.
, and
Souza
,
R. C.
,
2015
, “
Artificial Neural Network and Wavelet Decomposition in the Forecast of Global Horizontal Solar Radiation
,”
Pesqui. Oper.
,
35
(
1
), pp.
73
90
. 10.1590/0101-7438.2015.035.01.0073
49.
Diagne
,
M.
,
David
,
M.
,
Boland
,
J.
,
Schmutz
,
N.
, and
Lauret
,
P.
,
2014
, “
Post-Processing of Solar Irradiance Forecasts From WRF Model at Reunion Island
,”
Sol. Energy
,
105
, pp.
99
108
. 10.1016/j.solener.2014.03.016
50.
Lauret
,
P.
,
Voyant
,
C.
,
Soubdhan
,
T.
,
David
,
M.
, and
Poggi
,
P.
,
2015
, “
A Benchmarking of Machine Learning Techniques for Solar Radiation Forecasting in an Insular Context
,”
Sol. Energy
,
112
, pp.
446
457
. 10.1016/j.solener.2014.12.014
51.
Amillo
,
A. G.
,
Huld
,
T.
, and
Müller
,
R.
,
2014
, “
A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation
,”
Remote Sens.
,
6
(
9
), pp.
8165
8189
. 10.3390/rs6098165
52.
Calif
,
R.
,
Schmitt
,
F. G.
,
Huang
,
Y. X.
, and
Soubdhan
,
T.
,
2013
, “
Intermittency Study of High Frequency Global Solar Radiation Sequences Under a Tropical Climate
,”
Sol. Energy
,
98
(
Part C
), pp.
349
365
. 10.1016/j.solener.2013.09.018
53.
Zeng
,
Z.
,
Yang
,
H.
,
Zhao
,
R.
, and
Meng
,
J.
,
2013
, “
Nonlinear Characteristics of Observed Solar Radiation Data
,”
Sol. Energy
,
87
(
1
), pp.
204
218
. 10.1016/j.solener.2012.10.019
54.
Zhu
,
H. L.
,
Li
,
X.
,
Sun
,
Q.
,
Nie
,
L.
,
Yao
,
J.
, and
Zhao
,
G.
,
2016
, “
A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks
,”
Energies
,
9
(
1
), p.
11
. 10.3390/en9010011
55.
Dos Anjos
,
P. S.
,
Da Silva
,
A. S.
,
Stošić
,
B.
, and
Stošić
,
T.
,
2015
, “
Long-Term Correlations and Cross-Correlations in Wind Speed and Solar Radiation Temporal Series From Fernando de Noronha Island, Brazil
,”
Physica A
,
424
(
15
), pp.
90
96
. 10.1016/j.physa.2015.01.003
56.
Bashan
,
A.
,
Bartsch
,
R.
,
Kantelhardt
,
J. W.
, and
Havlin
,
S.
,
2008
, “
Comparison of Detrending Methods for Fluctuation Analysis
,”
Physica A
,
387
(
21
), pp.
5080
5090
. 10.1016/j.physa.2008.04.023
57.
Lave
,
M.
, and
Kleissl
,
J.
,
2010
, “
Solar Variability of Four Sites Across the State of Colorado
,”
Renew. Energy
,
35
(
12
), pp.
2867
2873
. 10.1016/j.renene.2010.05.013
58.
Hoff
,
T. E.
, and
Perez
,
R.
,
2010
, “
Quantifying PV Power Output Variability
,”
Sol. Energy
,
84
(
10
), pp.
1782
1793
. 10.1016/j.solener.2010.07.003
59.
Lave
,
M.
,
Kleissl
,
J.
, and
Arias-Castro
,
E.
,
2011
, “
High-Frequency Irradiance Fluctuations and Geographic Smoothing
,”
Sol. Energy
,
86
(
8
), pp.
2190
2199
. 10.1016/j.solener.2011.06.031
60.
Pearson
,
K.
,
1901
, “
On Lines and Planes of Closest Fit to Systems of Points in Space
,”
Philos. Mag.
,
2
(
11
), pp.
559
572
. 10.1080/14786440109462720
61.
Hotelling
,
H.
,
1933
, “
Analysis of a Complex of Statistical Variables Into Principal Components
,”
J. Educ. Psychol.
,
24
(
6
), pp.
417
441
. 10.1037/h0071325
62.
Jolliffe
,
I. T.
,
1986
,
Principal Component Analysis
,
Springer, University of Geneva
,
New York
.
63.
Amato
,
U.
,
Andretta
,
A.
,
Bartoli
,
B.
,
Coluzzi
,
B.
,
Cuomo
,
V.
,
Fontana
,
F.
, and
Serio
,
C.
,
1986
, “
Markov Processes and Fourier Analysis as a Tool to Describe and Simulate Daily Solar Irradiance
,”
Sol. Energy
,
37
(
3
), pp.
179
194
. 10.1016/0038-092X(86)90075-7
64.
Rahman
,
M.
,
2011
,
Applications of Fourier Transforms to Generalized Functions
,
WIT Press
,
Halifax, Nova Scotla, Canada
.
65.
Cohen
,
L.
,
1995
,
Time-Frequency Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
66.
Gröchenig
,
K.
,
2001
,
Foundations of Time-Frequency Analysis
,
Birkhäuser
,
Boston, MA
.
67.
Daubechies
,
I.
,
1990
, “
The Wavelet Transform, Time-Frequency Localization and Signal Analysis
,”
IEEE Trans. Inf. Theory
,
36
(
5
), pp.
961
1005
. 10.1109/18.57199
68.
Kalogirou
,
S. A.
,
2001
, “
Artificial Neural Networks in Renewable Energy Systems Applications: A Review
,”
Renew. Sustain. Energy Rev.
,
5
(
4
), pp.
373
401
. 10.1016/s1364-0321(01)00006-5
69.
Mubiru
,
J.
,
2008
, “
Predicting Total Solar Irradiation Values Using Artificial Neural Networks
,”
Renew. Energy
,
33
(
10
), pp.
2329
2332
. 10.1016/j.renene.2008.01.009
70.
Mubiru
,
J.
, and
Banda
,
E.
,
2008
, “
Estimation of Monthly Average Daily Global Solar Irradiation Using Artificial Neural Networks
,”
Sol. Energy
,
82
(
2
), pp.
181
187
. 10.1016/j.solener.2007.06.003
71.
Behrang
,
M. A.
,
Assareh
,
E.
,
Ghanbarzadeh
,
A.
, and
Noghrehabadi
,
A. R.
,
2010
, “
The Potential of Different Artificial Neural Network (ANN) Techniques in Daily Global Solar Radiation Modelling Based on Meteorological Data
,”
Sol. Energy
,
84
(
8
), pp.
1468
1480
. 10.1016/j.solener.2010.05.009
72.
Werbos
,
P. J.
,
1975
,
Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
,
Harvard University
,
Cambridge, MA
.
73.
Paulin
,
B. J.
, and
Praynlin
,
E.
,
2016
, “
Solar Photovoltaic Output Power Forecasting Using Back Propagation Neural Network
,”
ICTACT J. Soft Comput.
,
6
(
2
), pp.
2229
6956
.
74.
Marquez
,
R.
, and
Coibra
,
C. F. M.
,
2013
, “
Proposed Metric for Evaluation of Solar Forecasting Models
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011016
. 10.1115/1.4007496
75.
Coimbra
,
C. F. M.
,
Kleissl
,
J.
, and
Márquez
,
R.C
,
2013
,
Solar Eenrgy Forecasting and Resource Assessment
,
Elsevier Academic Press
,
San Diego, CA
.
76.
Kaur
,
A.
,
Nonnenmacher
,
L.
,
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2016
, “
Benefits of Solar Forecasting for Energy Imbalance Markets
,”
Renew. Energy
,
86
, pp.
819
830
. 10.1016/j.renene.2015.09.011
You do not currently have access to this content.