Abstract

A high-flux solar simulator is essential for evaluating solar thermal components under controlled and adjustable flux input conditions. This study presents a newly built high-flux solar simulator composed of 19 individual units. Each unit includes a xenon short-arc lamp (each consuming up to 6 kW electricity power) coupled with a truncated ellipsoidal reflector, a cooling blower, and a power module. The power module yields a current in the range of 50–160 A. The number of lamps in use is flexible, which allows for a wide range of radiation flux (10%–100%) on the focal plane. The radiation power, peak value, flux distribution on the circular target plane, and conversion efficiency are evaluated based on a flux mapping method. The results indicate that the proposed solar simulator is capable of achieving thermal power of 23.3 kW, peak flux in excess of 1.78 MW/m2, a stagnation temperature exceeding 2360 °C, and average irradiance of 773.4 kW/m2 on the focal plane (diameter of 260 mm). The electro-thermal conversion efficiency of the simulator is 35.7%. A ray-tracing method was employed, and the simulation results were found to be in good agreement with those in the experiments. An experimental test of a volumetric ceramic receiver was conducted, and the results indicate the availability and applicability of the high-flux solar simulator when carrying out studies about solar receivers.

References

1.
Dutta
,
P.
,
2017
, “
High Temperature Solar Receiver and Thermal Storage Systems
,”
Appl. Therm. Eng.
,
124
, pp.
624
632
. 10.1016/j.applthermaleng.2017.06.028
2.
Li
,
Q.
,
Bai
,
F.
,
Yang
,
B.
,
Wang
,
Z.
,
El Hefni
,
B.
,
Liu
,
S.
,
Kubo
,
S.
,
Kiriki
,
H.
, and
Han
,
M.
,
2016
, “
Dynamic Simulation and Experimental Validation of an Open Air Receiver and a Thermal Energy Storage System for Solar Thermal Power Plant
,”
Appl. Energy
,
178
, pp.
281
293
. 10.1016/j.apenergy.2016.06.056
3.
Wang
,
F.
,
Bai
,
F.
,
Wang
,
T.
,
Li
,
Q.
, and
Wang
,
Z.
,
2016
, “
Experimental Study of a Single Quartz Tube Solid Particle Air Receiver
,”
Sol. Energy
,
123
, pp.
185
205
. 10.1016/j.solener.2015.10.048
4.
Wang
,
T.
,
Bai
,
F.
,
Chu
,
S.
,
Zhang
,
X.
, and
Wang
,
Z.
,
2017
, “
Experiment Study of a Quartz Tube Falling Particle Receiver,” Front
,”
Energy
,
11
(
4
), pp.
472
479
.
5.
Gallo
,
A.
,
Marzo
,
A.
,
Fuentealba
,
E.
, and
Alonso
,
E.
,
2017
, “
High Flux Solar Simulators for Concentrated Solar Thermal Research: A Review
,”
Renew. Sust. Energ. Rev.
,
77
, pp.
1385
1402
. 10.1016/j.rser.2017.01.056
6.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Häberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng
,
129
(
4
), pp.
405
411
. 10.1115/1.2769701
7.
Codd
,
D. S.
,
Carlson
,
A.
,
Rees
,
J.
, and
Slocum
,
A. H.
,
2010
, “
A low Cost High Flux Solar Simulator
,”
Sol. Energy
,
84
(
12
), pp.
2202
2212
. 10.1016/j.solener.2010.08.007
8.
Xu
,
J.
,
Tang
,
C.
,
Cheng
,
Y.
,
Li
,
Z.
,
Cao
,
H.
,
Yu
,
X.
,
Li
,
Y.
, and
Wang
,
Y.
,
2016
, “
Design, Construction, and Characterization of an Adjustable 70 kW High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041010
. 10.1115/1.4033498
9.
Guesdon
,
C.
,
Alxneit
,
I.
,
Tschudi
,
H. R.
,
Wuillemin
,
D.
,
Petrasch
,
J.
,
Brunner
,
Y.
,
Winkel
,
L.
, and
Sturzenegger
,
M.
,
2006
, “
PSI’s 1 kW Imaging Furnace—A Tool for High-Temperature Chemical Reactivity Studies
,”
Sol. Energy
,
80
(
10
), pp.
1344
1348
. 10.1016/j.solener.2005.04.028
10.
Krueger
,
K. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2011
, “
Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng
,
133
(
1
), p.
011013
. 10.1115/1.4003298
11.
Bortolini
,
M.
,
Gamberi
,
M.
, and
Graziani
,
A.
,
2013
, “
Ray-Tracing Model and Monte Carlo Simulation for the Design of the Concentrating Solar Simulator Reflector
,”
Int. J. Mod. Eng. Res.
,
3
(
1
), pp.
447
455
.
12.
Wang
,
W.
,
Aichmayer
,
L.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2014
, “
Design and Validation of a low-Cost High-Flux Solar Simulator Using Fresnel Lens Concentrators
,”
Energy Procedia
,
49
, pp.
2221
2230
. 10.1016/j.egypro.2014.03.235
13.
Gill
,
R.
,
Bush
,
E.
,
Haueter
,
P.
, and
Loutzenhiser
,
P.
,
2015
, “
Characterization of a 6 kW High-Flux Solar Simulator with an Array of Xenon arc Lamps Capable of Concentrations of Nearly 5000 Suns
,”
Rev. Sci. Instrum.
,
86
, p.
125107
. 10.1063/1.4936976
14.
Sarwar
,
J.
,
Georgakis
,
G.
,
LaChance
,
R.
, and
Ozalp
,
N.
,
2014
, “
Description and Characterization of an Adjustable Flux Solar Simulator for Solar Thermal, Thermochemical and Photovoltaic Applications
,”
Sol. Energy
,
100
, pp.
179
194
. 10.1016/j.solener.2013.12.008
15.
Li
,
J.
,
Gonzalez-Aguilar
,
J.
,
Pérez-Rábago
,
C.
,
Zeaiter
,
H.
, and
Romero
,
M.
,
2014
, “
Optical Analysis of a Hexagonal 42 kWe High-Flux Solar Simulator
,”
Energy Procedia
,
57
, pp.
590
596
. 10.1016/j.egypro.2014.10.213
16.
Leveque
,
G.
,
Bader
,
R.
,
Lipiński
,
W.
, and
Haussener
,
S.
,
2016
, “
Experimental and Numerical Characterization of a new 45 kWe Multisource High-Flux Solar Simulator
,”
Opt. Express
,
24
(
22
), pp.
A1360
A1373
. 10.1364/OE.24.0A1360
17.
Bader
,
R.
,
Haussener
,
S.
, and
Lipiński
,
W.
,
2015
, “
Optical Design of Multisource High-Flux Solar Simulators
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021012
. 10.1115/1.4028702
18.
Wan
,
Z.
,
Qaisrani
,
A. M.
,
Du
,
X.
,
Wei
,
J.
,
Fang
,
J.
, and
Zhang
,
J.
,
2017
, “
Experimental Study on Thermal Performance of a Water/Steam Cavity Receiver with Solar Simulator
,”
Energy Procedia
,
142
, pp.
265
270
. 10.1016/j.egypro.2017.12.042
19.
Wang
,
W.
,
Aichmayer
,
L.
,
Garrido
,
J.
, and
Laumert
,
B.
,
2017
, “
Development of a Fresnel Lens Based High-Flux Solar Simulator
,”
Sol. Energy
,
144
, pp.
436
444
. 10.1016/j.solener.2017.01.050
20.
Wieghardt
,
K.
,
Laaber
,
D.
,
Dohmen
,
V.
,
Hilger
,
P.
,
Korber
,
D.
,
Funken
,
K.
, and
Hoffschmidt
,
B.
,
2018
, “
Synlight—A new Facility for Large-Scale Testing in CSP and Solar Chemistry
,”
AIP Conference Proceedings
,
AIP Publishing LLC
, p.
040042
.
21.
Guo
,
K.
,
Luo
,
Z.
,
Xiao
,
G.
,
Zhang
,
Y.
, and
Ni
,
M.
,
2013
, “
Simplified Source Model for a 54 kW Solar Simulator
,”
Proceedings of International Conference on Materials For Renewable Energy & Environment
, Vol.
1
,
IEEE
, pp.
62
65
.
22.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
23.
Dong
,
X.
,
Nathan
,
G. J.
,
Sun
,
Z.
,
Gu
,
D.
, and
Ashman
,
P. J.
,
2015
, “
Concentric Multilayer Model of the arc in High Intensity Discharge Lamps for Solar Simulators with Experimental Validation
,”
Sol. Energy
,
122
, pp.
293
306
. 10.1016/j.solener.2015.09.004
You do not currently have access to this content.