Abstract

For the first time, we used a hybrid physical–chemical vapor deposition (HPCVD) method to fabricate perovskite solar cells (PSCs) based on perovskite films with both organic cations and halogen anions. A high power conversion efficiency (PCE) of 18.1% was achieved based on a mixed perovskite film of MAxFA1−xPb (IyBr1−y)3 and the efficiency of the PSCs with MAPbI3 and MAxFA1−xPbI3 films were 14.5% and 16.4%, respectively. Perovskite material components and bandgaps were precisely tuned to achieve high photoelectric conversion performance. Three different types of perovskite films employed include MAPbI3, MAxFA1−xPbI3, and MAxFA1−xPb (IyBr1−y)3 (which are also designated as MAPbI3, MA0.89FA0.11PbI3, and MA0.54FA0.46Pb (I0.94Br0.06)3 with the respective bandgaps of 1.60 eV, 1.58 eV, and 1.61 eV. The experimental results demonstrate the ability to fabricate both organic cation and halogen anion mixed perovskite films by the HPCVD method and achieve easily adjustable bandgaps. In addition, the perovskite films fabricated by HPCVD have superior surface morphology, large crystal size, and low surface roughness. Eventually, this vapor-based method will have great potential in the fabrication of large-area and flexible PSCs to promote commercial application and industrialization of future PSCs.

References

1.
The National Renewable Energy Laboratory (NREL), 2019
, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf.
2.
Kojima
,
A.
,
Teshima
,
K.
,
Shirai
,
Y.
, and
Miyasaka
,
T.
,
2009
, “
Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
,”
J. Am. Chem. Soc.
,
131
(
17
), pp.
6050
6051
. 10.1021/ja809598r
3.
Xiao
,
J.-W.
,
Liu
,
L.
,
Zhang
,
D.
,
De Marco
,
N.
,
Lee
,
J.-W.
,
Lin
,
O.
,
Chen
,
Q.
, and
Yang
,
Y.
,
2017
, “
The Emergence of the Mixed Perovskites and Their Applications as Solar Cells
,”
Adv. Energy Mater.
,
7
(
20
), p.
1700491
. 10.1002/aenm.201700491
4.
Nelson
,
J.
,
2003
,
The Physics of Solar Cells
,
Imperial College Press
,
London
.
5.
Eperon
,
G. E.
,
Stranks
,
S. D.
,
Menelaou
,
C.
,
Johnston
,
M. B.
,
Herz
,
L. M.
, and
Snaith
,
H. J.
,
2014
, “
Formamidinium Lead Trihalide: A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells
,”
Energy Environ. Sci.
,
7
(
3
), pp.
982
988
. 10.1039/c3ee43822h
6.
Jung
,
H. S.
, and
Park
,
N.-G.
,
2015
, “
Perovskite Solar Cells: From Materials to Devices
,”
Small
,
11
(
1
), pp.
10
25
. 10.1002/smll.201402767
7.
Jiang
,
Q.
,
Zhao
,
Y.
,
Zhang
,
X.
,
Yang
,
X.
,
Chen
,
Y.
,
Chu
,
Z.
,
Ye
,
Q.
,
Li
,
X.
,
Yin
,
Z.
, and
You
,
J.
,
2019
, “
Surface Passivation of Perovskite Film for Efficient Solar Cells
,”
Nat. Photonics.
,
13
(
7
), pp.
460
466
. 10.1038/s41566-019-0462-y
8.
Saliba
,
M.
,
Correa-Baena
,
J.-P.
,
Wolff
,
C. M.
,
Stolterfoht
,
M.
,
Phung
,
N.
,
Albrecht
,
S.
,
Neher
,
D.
, and
Abate
,
A.
,
2018
, “
How to Make Over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures
,”
Chem. Mater.
,
30
(
13
), pp.
4193
4201
. 10.1021/acs.chemmater.8b00136
9.
Jeon
,
N. J.
,
Na
,
H.
,
Jung
,
E. H.
,
Yang
,
T.-Y.
,
Lee
,
Y. G.
,
Kim
,
G.
,
Shin
,
H.-W.
,
Il Seok
,
S.
,
Lee
,
J.
, and
Seo
,
J.
,
2018
, “
A Fluorene-Terminated Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells
,”
Nat. Energy.
,
3
(
8
), pp.
682
689
. 10.1038/s41560-018-0200-6
10.
Jiang
,
Q.
,
Chu
,
Z.
,
Wang
,
P.
,
Yang
,
X.
,
Liu
,
H.
,
Wang
,
Y.
,
Yin
,
Z.
,
Wu
,
J.
,
Zhang
,
X.
, and
You
,
J.
,
2017
, “
Planar-Structure Perovskite Solar Cells with Efficiency Beyond 21
,”
Adv. Mater.
,
29
(
46
), p.
1703852
. 10.1002/adma.201703852
11.
Kim
,
M.
,
Kim
,
G.-H.
,
Lee
,
T. K.
,
Choi
,
I. W.
,
Choi
,
H. W.
,
Jo
,
Y.
,
Yoon
,
Y. J.
,
Kim
,
J. W.
,
Lee
,
J.
,
Huh
,
D.
,
Lee
,
H.
,
Kwak
,
S. K.
,
Kim
,
J. Y.
, and
Kim
,
D. S.
,
2019
, “
Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells
,”
Joule
,
3
(
9
), pp.
2179
2192
. 10.1016/j.joule.2019.06.014
12.
Salado
,
M.
,
Calio
,
L.
,
Berger
,
R.
,
Kazim
,
S.
, and
Ahmad
,
S.
,
2016
, “
Influence of the Mixed Organic Cation Ratio in Lead Iodide Based Perovskite on the Performance of Solar Cells
,”
Phys. Chem. Chem. Phys.
,
18
(
39
), pp.
27148
27157
. 10.1039/C6CP03851D
13.
Lee
,
J. W.
,
Seol
,
D. J.
,
Cho
,
A. N.
, and
Park
,
N. G.
,
2014
, “
High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2 PbI3
,”
Adv. Mater.
,
26
(
29
), pp.
4991
4998
. 10.1002/adma.201401137
14.
Pellet
,
N.
,
Gao
,
P.
,
Gregori
,
G.
,
Yang
,
T. Y.
,
Nazeeruddin
,
M. K.
,
Maier
,
J.
, and
Gratzel
,
M.
,
2014
, “
Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting
,”
Angew. Chem. Int. Ed. Engl.
,
53
(
12
), pp.
3151
3157
. 10.1002/anie.201309361
15.
Yang
,
Z.
,
Chueh
,
C.-C.
,
Liang
,
P.-W.
,
Crump
,
M.
,
Lin
,
F.
,
Zhu
,
Z.
, and
Jen
,
A. K. Y.
,
2016
, “
Effects of Formamidinium and Bromide Ion Substitution in Methylammonium Lead Triiodide Toward High-Performance Perovskite Solar Cells
,”
Nano Energy
,
22
, pp.
328
337
. 10.1016/j.nanoen.2016.02.033
16.
Yang
,
M.
,
Zhang
,
T.
,
Schulz
,
P.
,
Li
,
Z.
,
Li
,
G.
,
Kim
,
D. H.
,
Guo
,
N.
,
Berry
,
J. J.
,
Zhu
,
K.
, and
Zhao
,
Y.
,
2016
, “
Facile Fabrication of Large-Grain CH3NH3PbI3-XBrx Films for High-Efficiency Solar Cells via CH3NH3Br-Selective Ostwald Ripening
,”
Nat. Commun.
,
7
(
1
), p.
12305
. 10.1038/ncomms12305
17.
Green
,
M. A.
,
Ho-Baillie
,
A.
, and
Snaith
,
H. J.
,
2014
, “
The Emergence of Perovskite Solar Cells
,”
Nat. Photonics
,
8
(
7
), pp.
506
514
. 10.1038/nphoton.2014.134
18.
Wei
,
X.
,
Peng
,
Y.
,
Jing
,
G.
, and
Cui
,
T.
,
2018
, “
Planar Structured Perovskite Solar Cells by Hybrid Physical Chemical Vapor Deposition With Optimized Perovskite Film Thickness
,”
Jpn. J. Appl. Phys.
,
57
(
5
), p.
052301
. 10.7567/JJAP.57.052301
19.
Burschka
,
J.
,
Pellet
,
N.
,
Moon
,
S. J.
,
Humphry-Baker
,
R.
,
Gao
,
P.
,
Nazeeruddin
,
M. K.
, and
Gratzel
,
M.
,
2013
, “
Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells
,”
Nature
,
499
(
7458
), pp.
316
319
. 10.1038/nature12340
20.
Im
,
J.-H.
,
Jang
,
I.-H.
,
Pellet
,
N.
,
Grätzel
,
M.
, and
Park
,
N.-G.
,
2014
, “
Growth of CH3NH3PbI3 Cuboids With Controlled Size for High-Efficiency Perovskite Solar Cells
,”
Nat. Nanotechnol.
,
9
(
11
), pp.
927
932
. 10.1038/nnano.2014.181
21.
Liu
,
M.
,
Johnston
,
M. B.
, and
Snaith
,
H. J.
,
2013
, “
Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition
,”
Nature
,
501
(
7467
), pp.
395
398
. 10.1038/nature12509
22.
Chen
,
C. W.
,
Kang
,
H. W.
,
Hsiao
,
S. Y.
,
Yang
,
P. F.
,
Chiang
,
K. M.
, and
Lin
,
H. W.
,
2014
, “
Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition
,”
Adv. Mater.
,
26
(
38
), pp.
6647
6652
. 10.1002/adma.201402461
23.
Leyden
,
M. R.
,
Ono
,
L. K.
,
Raga
,
S. R.
,
Kato
,
Y.
,
Wang
,
S.
, and
Qi
,
Y.
,
2014
, “
High Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition
,”
J. Mater. Chem. A.
,
2
(
44
), pp.
18742
18745
. 10.1039/C4TA04385E
24.
Chen
,
Q.
,
Zhou
,
H.
,
Song
,
T. B.
,
Luo
,
S.
,
Hong
,
Z.
,
Duan
,
H. S.
,
Dou
,
L.
,
Liu
,
Y.
, and
Yang
,
Y.
,
2014
, “
Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites Toward High Performance Solar Cells
,”
Nano Lett.
,
14
(
7
), pp.
4158
4163
. 10.1021/nl501838y
25.
Li
,
Y.
,
Cooper
,
J. K.
,
Buonsanti
,
R.
,
Giannini
,
C.
,
Liu
,
Y.
,
Toma
,
F. M.
, and
Sharp
,
I. D.
,
2015
, “
Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing
,”
J. Phys. Chem. Lett.
,
6
(
3
), pp.
493
499
. 10.1021/jz502720a
26.
Ono
,
L. K.
,
Leyden
,
M. R.
,
Wang
,
S.
, and
Qi
,
Y.
, “
Organometal Halide Perovskite Thin Films and Solar Cells by Vapor Deposition
,”
J. Mater. Chem. A.
,
4
(
18
), pp.
6693
6713
. 10.1039/C5TA08963H
27.
Conings
,
B.
,
Baeten
,
L.
,
De Dobbelaere
,
C.
,
D'Haen
,
J.
,
Manca
,
J.
, and
Boyen
,
H. G.
,
2014
, “
Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency With High Reproducibility Using a Thin Film Sandwich Approach
,”
Adv. Mater.
,
26
(
13
), pp.
2041
2046
. 10.1002/adma.201304803
28.
Mitzi
,
D. B.
,
Prikas
,
M.
, and
Chondroudis
,
K.
,
1999
, “
Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique
,”
Chem. Mater.
,
11
(
3
), pp.
542
544
. 10.1021/cm9811139
29.
Liang
,
P.-W.
,
Liao
,
C.-Y.
,
Chueh
,
C.-C.
,
Zuo
,
F.
,
Williams
,
S. T.
,
Xin
,
X.-K.
,
Lin
,
J.
, and
Jen
,
A. K. Y.
,
2014
, “
Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells
,”
Adv. Mater.
,
26
(
22
), pp.
3748
3754
. 10.1002/adma.201400231
30.
Jeon
,
N. J.
,
Noh
,
J. H.
,
Kim
,
Y. C.
,
Yang
,
W. S.
,
Ryu
,
S.
, and
Seok
,
S. I.
,
2014
, “
Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells
,”
Nat. Mater.
,
13
(
9
), pp.
897
903
. 10.1038/nmat4014
31.
Singh
,
T.
, and
Miyasaka
,
T.
,
2017
, “
Stabilizing the Efficiency Beyond 20% With a Mixed Cation Perovskite Solar Cell Fabricated in Ambient Air Under Controlled Humidity
,”
Adv. Energy Mater.
,
8
(
3
), p.
1700677
. 10.1002/aenm.201700677
32.
Shen
,
P.-S.
,
Chen
,
J.-S.
,
Chiang
,
Y.-H.
,
Li
,
M.-H.
,
Guo
,
T.-F.
, and
Chen
,
P.
,
2016
, “
Low-Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large-Area Module
,”
Adv. Mater. Interfaces
,
3
(
8
), p.
1500849
. 10.1002/admi.201500849
33.
Peng
,
Y.
,
Jing
,
G.
, and
Cui
,
T.
,
2015
, “
A Hybrid Physical–Chemical Deposition Process at Ultra-Low Temperatures for High-Performance Perovskite Solar Cells
,”
J. Mater. Chem. A
,
3
(
23
), pp.
12436
12442
. 10.1039/C5TA01730K
34.
Zhu
,
R.
,
Wei
,
X.
,
Xie
,
G.
,
Simon
,
T.
, and
Cui
,
T.
,
2020
, “
Numerical Simulation of Vapor Deposition Process of Perovskite Solar Cells: The Influence of Methylammonium Iodide Vapor Flow to Perovskite Growth
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011002
. 10.1115/1.4047296
35.
Chen
,
J.
,
Xu
,
J.
,
Xiao
,
L.
,
Zhang
,
B.
,
Dai
,
S.
, and
Yao
,
J.
,
2017
, “
Mixed-Organic-Cation (FA)x(MA)1-xPbI3 Planar Perovskite Solar Cells With 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process
,”
ACS Appl. Mater. Interfaces
,
9
(
3
), pp.
2449
2458
. 10.1021/acsami.6b13410
36.
Jiang
,
Y.
,
Leyden
,
M. R.
,
Qiu
,
L.
,
Wang
,
S.
,
Ono
,
L. K.
,
Wu
,
Z.
,
Juarez-Perez
,
E. J.
, and
Qi
,
Y.
,
2018
, “
Combination of Hybrid CVD and Cation Exchange for Upscaling Cs-Substituted Mixed Cation Perovskite Solar Cells With High Efficiency and Stability
,”
Adv. Funct. Mater.
,
28
(
1
), p.
1703835
. 10.1002/adfm.201703835
37.
Zhu
,
X.
,
Yang
,
D.
,
Yang
,
R.
,
Yang
,
B.
,
Yang
,
Z.
,
Ren
,
X.
,
Zhang
,
J.
,
Niu
,
J.
,
Feng
,
J.
, and
Liu
,
S.
,
2017
, “
Superior Stability for Perovskite Solar Cells With 20% Efficiency Using Vacuum Co-Evaporation
,”
Nanoscale
,
9
(
34
), pp.
12316
12323
. 10.1039/c7nr04501h
38.
Cui
,
P.
,
Wei
,
D.
,
Ji
,
J.
,
Huang
,
H.
,
Jia
,
E.
,
Dou
,
S.
,
Wang
,
T.
,
Wang
,
W.
, and
Li
,
M.
,
2019
, “
Planar p–n Homojunction Perovskite Solar Cells With Efficiency Exceeding 21.3%
,”
Nat. Energy
,
4
(
2
), pp.
150
159
. 10.1038/s41560-018-0324-8
39.
Yin
,
W. J.
,
Shi
,
T.
, and
Yan
,
Y.
,
2014
, “
Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance
,”
Adv. Mater.
,
26
(
27
), pp.
4653
4658
. 10.1002/adma.201306281
40.
Kim
,
G. Y.
,
Oh
,
S. H.
,
Nguyen
,
B. P.
,
Jo
,
W.
,
Kim
,
B. J.
,
Lee
,
D. G.
, and
Jung
,
H. S.
,
2015
, “
Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic-Organic Lead Halide Solar Cells
,”
J. Phys. Chem. Lett.
,
6
(
12
), pp.
2355
2362
. 10.1021/acs.jpclett.5b00967
41.
Chen
,
Q.
,
Zhou
,
H.
,
Hong
,
Z.
,
Luo
,
S.
,
Duan
,
H. S.
,
Wang
,
H. H.
,
Liu
,
Y.
,
Li
,
G.
, and
Yang
,
Y.
,
2014
, “
Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process
,”
J. Am. Chem. Soc.
,
136
(
2
), pp.
622
625
. 10.1021/ja411509g
42.
Peng
,
Y.
,
Jing
,
G.
, and
Cui
,
T.
,
2015
, “
High-Performance Perovskite Solar Cells Fabricated by Vapor Deposition With Optimized PbI2 precursor Films
,”
RSC Adv.
,
5
(
116
), pp.
95847
95853
. 10.1039/C5RA19343E
43.
Gao
,
B.
,
Meng
,
J.
,
Lu
,
J.
, and
Zhao
,
R.
,
2020
, “
CH3NH3PbI3 Perovskite Solar Cells With Efficiency Over 22% Fabricated by Green Antisolvent Method
,”
Mater. Lett.
,
274
, p.
127995
. 10.1016/j.matlet.2020.127995
44.
Kang
,
D. H.
, and
Park
,
N. G.
,
2019
, “
On the Current-Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis
,”
Adv. Mater.
,
31
(
34
), p.
e1805214
. 10.1002/adma.201805214
45.
Chen
,
B.
,
Yang
,
M.
,
Priya
,
S.
, and
Zhu
,
K.
,
2016
, “
Origin of J–V Hysteresis in Perovskite Solar Cells
,”
J. Phys. Chem. Lett.
,
7
(
5
), pp.
905
917
. 10.1021/acs.jpclett.6b00215
46.
Oranskaia
,
A.
,
Yin
,
J.
,
Bakr
,
O. M.
,
Brédas
,
J.-L.
, and
Mohammed
,
O. F.
,
2018
, “
Halogen Migration in Hybrid Perovskites: The Organic Cation Matters
,”
J. Phys. Chem. Lett.
,
9
(
18
), pp.
5474
5480
. 10.1021/acs.jpclett.8b02522
47.
Correa Baena
,
J. P.
,
Steier
,
L.
,
Tress
,
W.
,
Saliba
,
M.
,
Neutzner
,
S.
,
Matsui
,
T.
,
Giordano
,
F.
,
Jacobsson
,
T. J.
,
Srimath Kandada
,
A. R.
,
Zakeeruddin
,
S. M.
,
Petrozza
,
A.
,
Abate
,
A.
,
Nazeeruddin
,
M. K.
,
Grätzel
,
M.
, and
Hagfeldt
,
A.
,
2015
, “
Highly Efficient Planar Perovskite Solar Cells Through Band Alignment Engineering
,”
Energy Environ. Sci.
,
8
(
10
), pp.
2928
2934
. 10.1039/C5EE02608C
48.
Wu
,
S.
,
Zhang
,
J.
,
Li
,
Z.
,
Liu
,
D.
,
Qin
,
M.
,
Cheung
,
S. H.
,
Lu
,
X.
,
Lei
,
D.
,
So
,
S. K.
, and
Zhu
,
Z.
,
2020
, “
Modulation of Defects and Interfaces Through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells
,”
Joule
,
4
(
6
), pp.
1248
1262
. 10.1016/j.joule.2020.04.001
49.
Yeatman
,
E. M.
,
Gramling
,
H. M.
, and
Wang
,
E. N.
,
2017
, “
Introduction to the Special Topic on Nanomanufacturing
,”
Microsyst. Nanoeng.
,
3
(
1
), p.
17079
. 10.1038/micronano.2017.79
50.
Cassano
,
C. L.
,
Georgiev
,
T. Z.
, and
Fan
,
Z. H.
,
2017
, “
Using Airbrushes to Pattern Reagents for Microarrays and Paper-Fluidic Devices
,”
Microsyst. Nanoeng.
,
3
(
1
), p.
17055
. 10.1038/micronano.2017.55
You do not currently have access to this content.