Abstract

The energy gain of domestic solar water heating systems is determined by solar to thermal energy conversion and glazing optical efficiency. For this study, solar transmission properties of different transparent glazing materials such as acrylic, low-iron, medium-iron, and high-iron glasses were measured. The collector thermal efficiency under natural convection mode was compared for different transparent covers determined by numerical simulation using the Hottel–Whillier–Bliss equation. The low-iron glass (LiG-12 mm) has 16.3% and 20% higher thermal efficiency than medium- (MiG-12 mm) and high-iron glasses (HiG-12 mm), respectively, for a peak summer day. The effect of glass thickness on thermal performance is noteworthy in glasses than in acrylic glass sheets. Low-iron content glass with 6 mm thickness has the highest thermal and optical efficiency of 63.2% and 75.65%, respectively, for the collector optimum tilt for Vellore city in Tamil Nadu, India. The results are useful in the selection of glass covers for energy-efficient solar flat plate collectors.

References

1.
Raja
,
S. Y.
,
Sharma
,
K. V.
, and
Basaveswara Rao
,
M.
,
2009
, “
Evaluation of Heat Loss Coefficients in Solar Flat Plate Collectors
,”
ARPN J. Eng. Appl. Sci.
,
4
(
5
), pp.
15
19
.
2.
Akpinar
,
E. K.
, and
Koçyiğit
,
F.
,
2010
, “
Energy and Exergy Analysis of a New Flat-Plate Solar Air Heater Having Different Obstacles on Absorber Plates
,”
Appl. Energy
,
87
(
11
), pp.
3438
3450
. 10.1016/j.apenergy.2010.05.017
3.
Kashyap
,
Y.
,
Singh
,
A.
, and
Raja Sekhar
,
Y.
,
2018
, “
Exergy Analysis of a Flat Plate Solar Collector With Grooved Absorber Tube Configuration Using Aqueous ZnO–Ethylene Glycol
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061011
. 10.1115/1.4040582
4.
Myhan
,
R.
,
Bieranowski
,
J.
,
Szwejkowski
,
Z.
, and
Sitnik
,
E.
,
2017
, “
The Effect of Local Meteorological Conditions on the Optimal Tilt Angle of a Solar Energy Collector—A Case Study in Poland
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
044501
. 10.1115/1.4036637
5.
Segal
,
M.
,
Pielke
,
R. A.
, Jr.
, and
Ookouchi
,
Y.
,
1988
, “
On Optimizing Solar Collectors Orientation Under Daily Nonrandom Cloudiness Conditions
,”
ASME J. Sol. Energy Eng.
,
110
(
4
), pp.
346
348
. 10.1115/1.3268278
6.
Stanciu
,
C.
, and
Stanciu
,
D.
,
2014
, “
Optimum Tilt Angle for Flat Plate Collectors All Over the World—A Declination Dependence Formula and Comparisons of Three Solar Radiation Models
,”
Energy Convers. Manage.
,
81
, pp.
133
143
. 10.1016/j.enconman.2014.02.016
7.
Eltaweel
,
M.
, and
Abdel-Rehim
,
A. A.
,
2019
, “
Energy and Exergy Analysis of a Thermosiphon and Forced-Circulation Flat-Plate Solar Collector Using MWCNT/Water Nanofluid
,”
Case Stud. Therm. Eng.
,
14
, p.
100416
. 10.1016/j.csite.2019.100416
8.
Chabane
,
F.
,
Moummi
,
N.
, and
Benramache
,
S.
,
2014
, “
Experimental Study of Heat Transfer and Thermal Performance With Longitudinal Fins of Solar Air Heater
,”
J. Adv. Res.
,
5
(
2
), pp.
183
192
. 10.1016/j.jare.2013.03.001
9.
Jyothi
,
J.
,
Chaliyawala
,
H.
,
Srinivas
,
G.
,
Nagaraja
,
H. S.
, and
Barshilia
,
H. C.
,
2015
, “
Design and Fabrication of Spectrally Selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO Tandem Absorber for High-Temperature Solar Thermal Power Applications
,”
Sol. Energy Mater. Sol. Cells
,
140
, pp.
209
216
. 10.1016/j.solmat.2015.04.018
10.
Nahar
,
N. M.
,
2003
, “
Year Round Performance and Potential of a Natural Circulation Type of Solar Water Heater in India
,”
Energy Build.
,
35
(
3
), pp.
239
247
. 10.1016/S0378-7788(02)00091-9
11.
Kabeel
,
A. E.
, and
El-Agouz
,
S. A.
,
2011
, “
Review of Researches and Developments on Solar Stills
,”
Desalination
,
276
(
1–3
), pp.
1
12
. 10.1016/j.desal.2011.03.042
12.
Kessentini
,
H.
,
Castro
,
J.
,
Capdevila
,
R.
, and
Oliva
,
A.
,
2014
, “
Development of Flat Plate Collector With Plastic Transparent Insulation and Low-Cost Overheating Protection System
,”
Appl. Energy
,
133
, pp.
206
223
. 10.1016/j.apenergy.2014.07.093
13.
Avezov
,
R. R.
, and
Avezova
,
N. R.
,
2012
, “
Impact of Coefficient of Attenuation of Solar Radiation on Thermal Losses in Translucent Covers
,”
Appl. Sol. Energy
,
48
(
2
), pp.
94
101
. 10.3103/S0003701X12020065
14.
Standard ASTM
,
1973
, “
Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
,”
ASME 424 71
.
15.
British Standards Institution
,
1998
,
Glass in Building: Determination of Luminous and Solar Characteristics of Glazing
,
British Standards Institution
,
London
.
You do not currently have access to this content.