Abstract

This work presents a numerical simulation of a thermal model for a solar loop with parabolic trough collectors (PTCs) considering fluid recirculation at closed-loop (CL) operation during sunrise. At the beginning of the day, the heat transfer fluid (HTF) is recirculated in a CL to obtain the inlet loop operating temperature without resorting to additional preheating energy. Energy balances are carried out on the HTF, the absorber tube, and the glass envelope as a function of optical and thermo-physical parameters of the heat collector element (HCE). A system of second-order differential equations was established, and mathematical model was resolved by finite difference and Newton–Raphson methods for solution. This model has been well validated by comparing the results with the existing experimental and numerical data. Three typical days of winter, spring, and summer were simulated for the solar loop operation considering a CL fluid recirculation at start-up conditions. Results show a more flexible CL operation at relatively large flowrates compared to the open-loop (OL) operation, which requires substantial preheating energy at the same conditions; the start-up solar field using the CL strategy allows us both operational autonomy and significant energy savings. Solar loop thermal and optical powers gained and lost are plotted for the typical days considered; we observe that maximum thermal efficiency of 66.53% is achieved at 2.27 p.m. for the summer day.

References

1.
Van Sark
,
W.
, and
Corona
,
B.
,
2020
, “Concentrating Solar Power,”
Technological Learning in the Transition to a Low-Carbon Energy System
,
Academic Press, Elsevier Inc.
, pp.
221
231
.
2.
Fernández
,
A. G.
,
Gomez-Vidal
,
J.
,
Oró
,
E.
,
Kruizenga
,
A.
,
Solé
,
A.
, and
Cabeza
,
L. F.
,
2019
, “
Mainstreaming Commercial CSP Systems: A Technology Review
,”
Renewable Energy
,
140
, pp.
152
176
.
3.
Twidell
,
J.
, and
Weir
,
T.
,
2015
,
Renewable Energy Resources
, 3rd ed.
Routledge
,
London
.
4.
Pitz-Paal
,
R.
,
Dersch
,
J.
, and
Milow
,
B.
,
2004
, “ECOSTAR: European Concentrated Solar Thermal Road-Mapping,” DLR, Document, SES-CT-2003-502578, Cologne, Germany.
5.
Sonawane
,
P. D.
, and
Bupesh Raja
,
V. K.
,
2018
, “
An Overview of Concentrated Solar Energy and Its Applications
,”
Int. J. Ambient Energy
,
39
(
8
), pp.
898
903
.
6.
Fuqiang
,
W.
,
Ziming
,
C.
,
Jianyu
,
T.
,
Yuan
,
Y.
,
Yong
,
S.
, and
Linhua
,
L.
,
2017
, “
Progress in Concentrated Solar Power Technology With Parabolic Trough Collector System: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1314
1328
.
7.
Wirz
,
M.
,
Roesle
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Three-dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041012
.
8.
Too
,
Y. C. S.
, and
Benito
,
R.
,
2013
, “
Enhancing Heat Transfer in Air Tubular Absorbers for Concentrated Solar Thermal Applications
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1076
1083
.
9.
Valenzuela
,
L.
,
López-Martín
,
R.
, and
Zarza
,
E.
,
2014
, “
Optical and Thermal Performance of Large Size Parabolic-Trough Solar Collectors From Outdoor Experiments: A Test Method and a Case Study
,”
Energy
,
70
(
1
), pp.
456
464
.
10.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,”
National Renewable Energy Laboratory
,
Golden, CO
, Technical Report No. NREL/TP-550-34169.
11.
Lüpfert
,
E.
,
Riffelmann
,
K. J.
,
Price
,
H.
,
Burkholder
,
F.
, and
Moss
,
T.
,
2008
, “
Experimental Analysis of Overall Thermal Properties of Parabolic Trough Receivers
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021007
.
12.
Wang
,
Y.
,
Liu
,
Q.
,
Lei
,
J.
, and
Jin
,
H.
,
2015
, “
Performance Analysis of a Parabolic Trough Solar Collector With Non-Uniform Solar Flux Conditions
,”
Int. J. Heat Mass Transfer
,
82
, pp.
236
249
.
13.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2019
, “
Alternative Designs of Parabolic Trough Solar Collectors
,”
Prog. Energy Combust. Sci.
,
71
, pp.
81
117
.
14.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
A. R.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results: SEGS LS-2 Solar Collector
,”
Sandia National Laboratories
,
Albuquerque, NM
, Technical Report No. SAND94-1884.
15.
Hirsch
,
T.
,
Fabian Feldhoff
,
J.
, and
Schenk
,
H.
,
2012
, “
Start-Up Modelling for Annual CSP Yield Calculation
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031004
.
16.
Juuso
,
E. K.
, and
Yebra
,
L. J.
,
2013
, “
Model-Based Intelligent Control of a Solar Energy Collector Field
,”
8th EUROSIM Congress on Modelling and Simulation
,
Cardiff, UK
,
Sept. 10–13
,
IEEE
, pp.
513
518
.
17.
García-Valladares
,
O.
, and
Velázquez
,
N.
,
2009
, “
Numerical Simulation of Parabolic Trough Solar Collector: Improvement Using Counter Flow Concentric Circular Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
597
609
.
18.
Bassem
,
S.
,
Jalil
,
J. M.
, and
Jaffer Ismael
,
S.
,
2021
, “
Experimental Study of Double Pass Water Passage in Evacuated Tube With Parabolic Trough Collector
,”
Journal of Physics: Conference Series, 3rd International Scientific Conference of Engineering Sciences and Advances Technologies (IICESAT), College of Material Engineering, University of Babylon
,
Iraq
,
June 4–5
,
IOP Publising
, p.
012058
.
19.
Sun
,
J.
,
Liu
,
Q.
, and
Hong
,
H.
,
2015
, “
Numerical Study of Parabolic-Trough Direct Steam Generation Loop in Recirculation Mode: Characteristics, Performance and General Operation Strategy
,”
Energy Convers. Manage.
,
96
, pp.
287
302
.
20.
Guo
,
S.
,
Liu
,
D.
,
Chen
,
X.
,
Chu
,
Y.
,
Xu
,
C.
,
Liu
,
Q.
, and
Zhou
,
L.
,
2017
, “
Model and Control Scheme for Recirculation Mode Direct Steam Generation Parabolic Trough Solar Power Plants
,”
Appl. Energy
,
202
, pp.
700
714
.
21.
Incropera
,
F. P.
,
DeWitt
,
D.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley and Sons
,
NY
.
22.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
, 2nd ed.,
John Wiley and Sons
,
NY
.
23.
Padilla
,
R. V.
,
2011
,
Simplified Methodology for Designing Parabolic Trough Solar Power Plants
,
University of South Florida
,
FL
.
24.
Goswami
,
D.
, and
Kreith
,
F.
,
2008
,
Energy Conversion
,
CRC Press
,
Boca Raton, FL
.
25.
Rabl
,
A.
,
1985
,
Active Solar Collectors and Their Applications
,
Oxford University Press
,
Oxford, UK
.
26.
Montes
,
M. J.
,
Abánades
,
A.
,
Martínez-Val
,
J. M.
, and
Valdés
,
M.
,
2009
, “
Solar Multiple Optimization for a Solar-Only Thermal Power Plant, Using Oil as Heat Transfer Fluid in the Parabolic Trough Collectors
,”
Sol. Energy
,
83
(
12
), pp.
2165
2176
.
27.
Geyer
,
M.
,
Lüpfert
,
E.
,
Osuna
,
R.
,
Esteban
,
A.
,
Schiel
,
W.
,
Schweitzer
,
A.
,
Zarza
,
E.
,
Nava
,
P.
,
Langenkamp
,
J.
, and
Mandelberg
,
E.
,
2002
, “
EUROTROUGH-Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation
,”
11th International Symposium on Concentrating Solar Power and Chemical Energy Technologies
,
Zurich, Switzerland
,
Sept. 4–6
, SolarPACES 2002,
29
(
5
), p.
4
6
, https://www.sciencedirect.com/journal/energy/vol/29/issue/5
28.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
29.
Ratzel
,
A. C.
,
Hickox
,
C. E.
, and
Gartling
,
D. K.
,
1979
, “
Techniques for Reducing Thermal Conduction and Natural Convection Heat Losses in Annular Receiver Geometries
,”
ASME J. Sol. Energy Eng.
,
101
(
1
), pp.
108
113
.
30.
Marshal
,
N.
,
1976
,
Gas Encyclopedia
, Eng. ed.,
Elsevier
,
New York
.
31.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
, 2nd ed.,
John Wiley and Sons
,
New York
.
32.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Cross Flow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.
33.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1049
1053
.
34.
Reicosky
,
D. C.
,
Winkelman
,
L. J.
,
Baker
,
J. M.
, and
Baker
,
D. G.
,
1989
, “
Accuracy of Hourly Air Temperatures Calculated From Daily Minima and Maxima
,”
Agric. For. Meteorol.
,
46
(
3
), pp.
193
209
.
You do not currently have access to this content.