Abstract

The essential aim of this study is to estimate the daily utilizability and useful energy of a flat-plate solar collector in Algeria for different climatic zones. For this purpose, a program based on Klein’s method was developed to estimate the daily utilizability and the useful energy characterized by the optical efficiency and the global loss coefficient that are equal to 0.72 and 7.9 W/m2K, respectively. The seasonal potentials of the whole studied zones are represented by geographical maps; then, a parametric study is performed to see the influence of the inlet temperature of the heat transfer fluid, the optical efficiency, and the global coefficient losses on the average utilizability per month for each site. Subsequently, the utilizability variations considering different sites and during various months are analyzed in terms of the average temperature of the heat transfer fluid, the optical efficiency, and the coefficient of global losses. The results show that the usable potential produced by this type of solar collector is 1500–1700 MJ/m2 in climatic zones E5 (Tanegrouft), E4 (Sahara), and E3 (Pre-Sahara) and is 1300 MJ/m2 in climatic zones E2 (Highlands) and E1 (Coastal) during the summer season. While for the winter season, the usable potential is 500–700 MJ/m2 in climatic zones E1 and E2, and 700–900 MJ/m2 in E3, E4, and E5, which can be considered the most favorable zones for the conversion of the available solar energy into thermal one through the flat-plate solar collector. The study of the effect on the system performance considering usability has shown that the effects of the overall loss coefficient are more significant compared to optical efficiency.

References

1.
Klein
,
S. A.
,
1978
, “
Calculation of Flat—Plate Collector Utilizability
,”
Sol. Energy
,
21
(
5
), pp.
393
402
.
2.
Whillier
,
A.
,
1953
, “
Solar Energy Collection and Its Utilization for House Heating
,”
Ph.D. thesis
,
University of the Witwatersrand
,
Cambridge, MA
. https://dspace.mit.edu/handle/1721.1/11922?show=full
3.
Liu
,
B. Y. H.
, and
Jordon
,
R. C.
,
1963
, “
The Long—Term Average Performance of Flat—Plate Solar Energy Collectors
,”
Sol. Energy
,
7
(
2
), pp.
53
74
.
4.
Collares-Pereira
,
M.
, and
Rabl
,
A.
,
1979
, “
Simple Procedure for Predicting Long—Term Average Performance of None Concentrating and Concentrating Solar Collectors
,”
Sol. Energy
,
23
(
3
), pp.
235
253
.
5.
Klein
,
S. A.
, and
Beckman
,
W. A.
,
1979
, “
A General Design Method for Closed—Loop Solar Energy Systems
,”
Sol. Energy
,
22
(
3
), pp.
269
282
.
6.
Gordon
,
J. M.
,
Govaer
,
D.
, and
Zarmi
,
Y.
,
1981
, “
The Utilizability Method With Hourly Vs Daily Insolation Data
,”
Sol. Energy
,
27
(
2
), pp.
99
102
.
7.
Leung
,
C. T.
,
1982
, “
The Utilizability Method of Predicting the Long Term Performance of Flat Plate Solar Collectors
,”
Renewable Energy Rev. J.
,
4
(
2
), pp.
20
27
.
8.
Evans
,
D. L.
,
Rule
,
T. L.
, and
Wood
,
B. D.
,
1982
, “
A New Look at Long Term Collector Performance and Utilizability
,”
Sol. Energy
,
28
(
1
), pp.
13
23
.
9.
Gordon
,
J. M.
, and
Zarmi
,
Y.
,
1983
, “
The Utilizability Function–I Theoretical Development of a New Approach
,”
Sol. Energy
,
31
(
6
), pp.
529
536
.
10.
Clark
,
D. R.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
1983
, “
Algorithm for Evaluating the Hourly Radiation Utilizability Function
,”
ASME J. Sol. Energy Eng.
,
105
(
3
), pp.
281
287
.
11.
Clark
,
D. R.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
1984
, “
A Method for Estimating the Performance of Photovoltaic Systems
,”
Sol. Energy
,
33
(
6
), pp.
551
555
.
12.
Bourges
,
B.
,
1985
, “
Statistical Distribution of Solar Radiation: A European Data Set of Cumulative Frequency Curves of Solar Irradiance on Tilted Planes
,”
Int. J. Solar Energy
,
3
(
4–5
), pp.
241
253
.
13.
Bida
,
M.
, and
Kreider
,
J. F.
,
1987
, “
Monthly—Averaged Utilizability for Multiple Aperture Solar Systems
,”
ASME J. Sol. Energy Eng.
,
109
(
1
), pp.
52
57
.
14.
Armenta-Deu
,
C.
, and
De Andrés
,
M. C.
,
1991
, “
Correlation of a New Utilizability Function to Experimental Data for Southwestern Europe
,”
Renewable Energy
,
1
(
5–6
), pp.
571
582
.
15.
Kiatsiriroat
,
T.
,
Namprakai
,
P.
, and
Hiranlabh
,
J.
,
1993
, “
Performance Estimation of a PV Water—Pumping System With Utilizability Function
,”
Int. J. Energy Res.
,
17
(
4
), pp.
305
310
.
16.
Chandrasekaran
,
J.
, and
Kumar
,
S.
,
1994
, “
Daily Utilizability From Hourly Cumulative Frequency Curves
,”
Renewable Energy
,
4
(
8
), pp.
891
895
.
17.
Loxsom
,
F.
, and
Durongkaveroj
,
P.
,
1994
, “
Estimating the Performance of a Photovoltaic Pumping System
,”
Sol. Energy
,
52
(
2
), pp.
215
219
.
18.
Chandrasekaran
,
J.
,
Kumar
,
J. H.
, and
Kumar
,
S.
,
1994
, “
Daily Utilizability at Tow Tropical Locations
,”
RERIC Int. Energy J.
,
16
(
2
), pp.
57
65
.
19.
Harmim
,
A.
,
1994
, “
Contribution à L’Estimation des Performances Exergétiques de Différents Systèmes Solaires en Milieu Saharien
,”
Magister. thesis
,
Doctorat School, CDER
,
Algiers, Algeria
.
20.
Fraidenraich
,
N.
, and
Vilela
,
O. C.
,
2000
, “
Performance of Solar Systems With Non-Linear Behavior Calculated by the Utilizability Method: Application to PV Solar Pumps
,”
Sol. Energy
,
69
(
2
), pp.
131
137
.
21.
Satyamurty
,
V. V.
,
Sarath Babu
,
K.
, and
Lahiri
,
P. K.
,
2000
, “
An Equivalent Mean Day Calculation to Predict Monthly Average Daily Utilizability for Flat Plate Collectors
,”
ASME J. Sol. Energy Eng.
,
122
(
2
), pp.
106
113
.
22.
Janarthanan
,
B.
,
Chandrasekaran
,
J.
, and
Kumar
,
J.
,
2004
, “
Monthly Mean Daily Utilizability of South India
,”
Int. Energy J.
,
5
(
1
), pp.
33
40
.
23.
Karatasou
,
S.
,
Santamouris
,
M.
, and
Geros
,
V.
,
2006
, “
On the Calculation of Solar Utilizability for South Oriented Flat Plate Collectors Tilted to an Angle Equal to the Local Latitude
,”
Sol. Energy
,
80
(
12
), pp.
1600
1610
.
24.
Larrain
,
T.
,
Escobar
,
R.
, and
Vergara
,
J.
,
2010
, “
Performance Model to Assist Solar Thermal Power Plant Siting in Northern Chile Based on Backup Fuel Consumption
,”
Renewable Energy
,
35
(
8
), pp.
1632
1643
.
25.
Koussa
,
M.
, and
Saheb
,
D.
,
2014
, “
Long Term PV System Performances Estimating by Using Only the Main Weather Parameters Data. Case of Study: An Algeria Temperate Climate
,”
Proceedings of the 5th International Renewable Energy Congress (IREC)
,
Hammamet, Tunisia
,
Mar. 25–27
, pp.
1
6
.
26.
Koussa
,
M.
,
Hadji
,
S.
, and
Saheb
,
D.
,
2014
, “
Long—Term PV System Performances Evaluation by Only the Main Weather Parameters Data Uses. Case of Study: Desert and Arid Climate
,”
Proceedings of the International Renewable and Sustainable Energy Conference (IRSEC)
,
Ouarzazate, MA
,
Oct. 17–19
, pp.
1
6
.
27.
Xue
,
H. S.
,
2014
, “
Intercomparison of Long—Term Performance Prediction Methods for Flat Plate Domestic Solar Water Heating System
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
034501
.
28.
Smaili
,
K.
,
Kasbadji Merzouk
,
N.
, and
Merzouk
,
M.
,
2019
, “
Solar Climatic Atlas of Daily Usability by Variable Sky in Algeria
,”
Proceedings of the 7th International Renewable and Sustainable Energy Conference (IRSEC)
,
Agadir, MA
,
Nov. 27–30,
pp.
1
6
.
29.
Njoku
,
M. C.
,
Nwaji
,
G. N.
,
Ofong
,
I.
,
Ogueke
,
N. V.
, and
Anyanwu
,
E. E.
,
2020
, “
Evaluation of Flat—Plate Solar Thermal Collector Daily Utilizability for Some Nigerian Cities
,”
J. Eng. Res. Appl.
,
10
(
2
), pp.
12
21
.
30.
Ali
,
M.
,
Vukovic
,
V.
,
Muhammad Ali
,
H.
, and
Ahmed Sheikh
,
N.
,
2018
, “
Performance Analysis of Solar—Assisted Desiccant Cooling System Cycles in World Climate Zones
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
041009
.
31.
Oubenmoh
,
S.
,
Allouhi
,
A.
,
Sebbar
,
E. H.
,
Saadani
,
R.
,
Jamil
,
A.
,
Ait Mssad
,
A.
,
Rahmoune
,
M.
, and
Bentaleb
,
M.
,
2022
, “
Energy Assessment and Economic Study of Solar Floor Heating System in Different Climates in Morocco
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011005
.
32.
Verma
,
R.
,
Kumar
,
S.
,
Rakshit
,
D.
, and
Premachandran
,
B.
,
2022
, “
Design and Optimization of Energy Consumption for a Law—Rise Building With Seasonal Variations Under Composite Climate of India
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011006
.
33.
Borel
,
J.
,
1962
, “
Application of Construction Regulations in Algeria, Definition of Climatic Zones
,” Cahier du CSTB, No. 57, Paris.
34.
Belgaid
,
B.
,
2011
, “
Climatic Zones of Algeria
,”
Department of Architecture of Batna
.
35.
Smaili
,
K.
,
Kasbadji Merzouk
,
N.
, and
Merzouk
,
M.
,
2018
, “
Atlas Climatiques de L’Irradiation Solaire Journalière en Algérie
,”
Proceedings of the 5th International Seminar on New and Renewable Energies
,
Ghardaïa, Algeria
,
Oct. 24–25
, pp.
1
5
. http://uraer.cder.dz/sienr/sienr2018/st/30_Article_K_SMAILI_B30.pdf
36.
Garg
,
H. P.
, and
Garg
,
S. N.
,
1982
, “
Prediction of Global Solar Radiation From Bright Sunshine Hours and Other Meteorological Data
,”
Energy Convers. Manage.
,
23
(
2
), pp.
113
118
.
37.
Yaiche
,
M. R.
,
Bouhanik
,
A.
,
Bekkouche
,
S. M. A.
, and
Benouaz
,
T.
,
2016
, “
A New Modeling Approach Intended to Develop Maps of Annual Solar Irradiation and Comparative Study Using Satellite Data of Algeria
,”
J. Renewable Sustainable Energy
,
8
(
4
), p.
043702
.
38.
Koussa
,
M.
,
Haddadi
,
M.
, and
Malek
,
A.
,
2007
, “
Reconstitution des Irradiations Globale et Diffuse en Fonction de Quelques Paramètres Météorologiques Pour un Ciel Quelconque
,”
Renewable Energy Rev.
,
10
(
1
), pp.
75
92
.
39.
Koussa
,
M.
,
Malek
,
A.
, and
Haddadi
,
M.
,
2009
, “
Statistical Comparison of Monthly Mean Hourly and Daily Diffuse and Global Solar Irradiation Models and a Simulink Program Development for Various Algerian Climates
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1227
1235
.
40.
Hussain
,
M.
,
1984
, “
Estimation of Global and Diffuse Irradiation From Sunshine Duration and Atmospheric Water Vapour Content
,”
Sol. Energy
,
33
(
2
), pp.
217
220
.
41.
Klein
,
S. A.
, and
Beckman
,
W. A.
,
1984
, “
Review of Solar Radiation Utilizability
,”
ASME J. Sol. Energy Eng.
,
106
(
4
), pp.
393
402
.
42.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2020
,
Solar Engineering of Thermal Processes, Photovoltaics and Wind
,
John Wiley and Sons
,
Hoboken, NJ
.
43.
CNERIB classification
,
1993
,
CNERIB, Ministère de l’Habitat, Recommandations Architecturales. Editions ENAG, Alger
.
44.
Kasbadji Merzouk
,
N.
, and
Merzouk
,
M.
,
1989
, “
Solar Collectors
,” Internal Report. CDER, Algiers, Algeria.
You do not currently have access to this content.