Abstract

The effect of a cylindrical baffle on heat transfer to an immersed heat exchanger is investigated in initially thermally stratified tanks. The heat exchanger is located in the annular region created by the baffle and the tank wall. Three different cases of initial thermal stratification are explored, and in each case, experiments are conducted with and without the baffle in the stratified tank and in a comparable isothermal tank with the same initial energy, enabling exploration of the role of the baffle in a stratified tank and the role of stratification in tanks with or without the baffle. The baffle maintains the high initial temperature of the upper zone of the stratified tank for 10–16 min, as cool plumes that form on the heat exchanger are confined to the annular baffle region until they exit at the bottom of the tank. Regardless of stratification, the baffle always improves heat transfer to the immersed heat exchanger. In the isothermal tanks, the baffle increases total energy extracted in the first 30 min of discharge by over 20%. In stratified tanks, the baffle increases total energy extracted in 30 min of discharge by 9–16%. Initially, improvement in heat transfer in stratified tanks is due to the higher driving temperature differences around the heat exchanger. Later, after all the water from the hot zone has entered and flowed through the baffle, the tank is basically isothermal, and velocity increases as the fluid temperature drops, maintaining rates of heat transfer higher than that in the tank without the baffle. Stratification improves heat transfer in tanks without a baffle because, by design, the driving temperature difference between the heat exchanger wall and the surrounding fluid is considerably higher. However, in tanks with the baffle, stratification has only a modest positive effect on heat transfer to the immersed heat exchanger.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
V.
Masson-Delmotte
,
P.
Zhai
,
A.
Pirani
,
S.
Connors
,
C.
Péan
,
S.
Berger
,
N.
Caud
,
Y.
Chen
,
L.
Goldfarb
,
M.
Gomis
,
M.
Huang
,
K.
Leitzell
,
E.
Lonnoy
,
J.
Matthews
,
T.
Maycock
,
T.
Waterfield
,
O.
Yelekçi
,
R.
Yu
, and
B.
Zhou
,
2021
, eds., “IPCC, 2021: Summary for Policymakers. Climate Change 2021: The Physical Science Basis,” Technical Report,
IPCC
,
Geneva, Switzerland
, https://www.ipcc.ch/report/ar6/wg1/.
2.
Dehghani-Sanij
,
A.
,
Tharumalingam
,
E.
,
Dusseault
,
M.
, and
Fraser
,
R.
,
2019
, “
Study of Energy Storage Systems and Environmental Challenges of Batteries
,”
Renew. Sustain. Energy Rev.
,
104
, pp.
192
208
.
3.
Tabassum-Abbasi
,
P.
, and
Abbasi
,
S.
,
2014
, “
Wind Energy: Increasing Deployment, Rising Environmental Concerns
,”
Renew. Sustain. Energy Rev.
,
31
, pp.
270
288
.
4.
Han
,
Y.
,
Wang
,
R.
, and
Dai
,
Y.
,
2009
, “
Thermal Stratification Within the Water Tank
,”
Renew. Sustain. Energy Rev.
,
13
(
5
), pp.
1014
1026
.
5.
Hollands
,
K.
, and
Lightstone
,
M.
,
1989
, “
A Review of Low-Flow, Stratified-Tank Solar Water Heating Systems
,”
Sol. Energy
,
43
(
2
), pp.
97
105
.
6.
Li
,
S.
,
Zhang
,
Y.
,
Zhang
,
K.
,
Li
,
X.
,
Li
,
Y.
, and
Zhang
,
X.
,
2014
, “
Study on Performance of Storage Tanks in Solar Water Heater System in Charge and Discharge Progress
,”
Energy Procedia
,
48
, pp.
384
393
.
7.
Drück
,
H.
, and
Bachmann
,
S.
,
2002
, “
Hot Water Performance of Solar Combistores–Description of a Test Method and the Experience Gained With the Application of the Method on Three Different Types of Combistores
,”
Technical Report, Internation Energy Agency SHC Task 26 Report, Solar Combisystems, Paris
, https://task26.iea-shc.org/Data/Sites/1/publications/task26-b-hot_water_performance.pdf.
8.
Drück
,
H.
,
2002
, “
Influence of Different Combistore Concepts on the Overall System Performance
,”
International Energy Agency SHC Task 26
, Industry Workshop, Oslo, Norway, pp.
39
46
, https://task26.iea-shc.org/Data/Sites/1/publications/task26-proceedings-oslo.pdf.
9.
Drück
,
H.
, and
Hahne
,
E.
,
1999
, “
Test and Comparison of Hot Water Stores for Solar Combistores
,” Proceedings of EuroSun 98,
A.
Goetzberger
, ed.,
Franklin
,
Portoroz, Slovenia
, pp.
14
17
.
10.
Mote
,
R.
,
Probert
,
S.
, and
Nevrala
,
D.
,
1992
, “
Rate of Heat Recovery From a Hot-Water Store: Influence of the Aspect Ratio of a Vertical-Axis Open-Ended Cylinder Beneath a Submerged Heat-Exchanger
,”
Appl. Energy
,
41
(
2
), pp.
115
136
.
11.
Chauvet
,
L.
,
Nevrala
,
D.
, and
Probert
,
S.
,
1993
, “
Influences of Baffles on the Rate of Heat Recovery Via a Finned-Tubed Heat-Exchanger Immersed in a Hot-Water Store
,”
Appl. Energy
,
45
(
3
), pp.
191
217
.
12.
Su
,
Y.
, and
Davidson
,
J. H.
,
2008
, “
Discharge of Thermal Storage Tanks via Immersed Baffled Heat Exchangers: Numerical Model of Flow and Temperature Fields
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021016
.
13.
Boetcher
,
S. K.
,
Kulacki
,
F.
, and
Davidson
,
J. H.
,
2010
, “
Negatively Buoyant Plume Flow in a Baffled Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
034502
.
14.
Boetcher
,
S. K.
,
Kulacki
,
F.
, and
Davidson
,
J. H.
,
2012
, “
Use of a Shroud and Baffle to Improve Natural Convection to Immersed Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011010
.
15.
Zemler
,
M. K.
, and
Boetcher
,
S. K.
,
2014
, “
Investigation of Shroud Geometry to Passively Improve Heat Transfer in a Solar Thermal Storage Tank
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011017
.
16.
Haltiwanger
,
J. F.
, and
Davidson
,
J. H.
,
2009
, “
Discharge of a Thermal Storage Tank Using an Immersed Heat Exchanger With an Annual Baffle
,”
Sol. Energy
,
83
(
2
), pp.
193
201
.
17.
Nicodemus
,
J. H.
,
Jeffrey
,
J.
,
Haase
,
J.
, and
Bedding
,
D.
,
2017
, “
Effect of Baffle and Shroud Designs on Discharge of a Thermal Storage Tank Using an Immersed Heat Exchanger
,”
Sol. Energy
,
157
, pp.
911
919
.
18.
Nicodemus
,
J. H.
,
Smith
,
J. H.
, and
Goldstein
,
H.
,
2019
, “
Numerical Simulations of Storage-Side Natural Convection to an Immersed Coiled Heat Exchanger With Baffle-Shrouds
,”
Sol. Energy
,
182
, pp.
304
315
.
19.
Nicodemus
,
J. H.
,
Huang
,
X.
,
Dentinger
,
E.
,
Petitt
,
K.
, and
Smith
,
J. H.
,
2020
, “
Effects of Baffle Width on Heat Transfer to an Immersed Coil Heat Exchanger: Experimental Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050901
.
20.
Nicodemus
,
J. H.
,
Smith
,
J.
,
Holme
,
A.
,
Johnson
,
S.
, and
Petitt
,
K.
,
2022
, “
The Effect of Pitch on Heat Transfer to an Immersed Heat Exchanger in a Solar Thermal Storage Tank With and Without a Baffle
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061010
.
21.
Wang
,
Z.
,
Yang
,
W.
,
Qiu
,
F.
,
Zhang
,
X.
, and
Zhao
,
X.
,
2015
, “
Solar Water Heating: From Theory, Application, Marketing and Research
,”
Renew. Sustain. Energy Rev.
,
41
, pp.
68
84
.
22.
Devore
,
N.
,
Yip
,
H.
, and
Rhee
,
J.
,
2013
, “
Domestic Hot Water Storage Tank: Design and Analysis for Improving Thermal Stratification
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
040905
.
23.
Morgan
,
V. T.
,
1975
, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
,”
Adv. Heat Transf.
,
11
, pp.
199
264
.
24.
Hilpert
,
R.
,
1933
, “
Wärmeabgabe Von Geheizten Drähten Und Rohren Im Luftstrom
,”
Forschung auf dem Gebiet des Ingenieurwesens A
,
4
(
5
), pp.
215
224
.
You do not currently have access to this content.