Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

As oceans cover over 70% of the planet's surface, they represent a large reservoir of resources that remain vastly untapped. Uncrewed underwater vehicles (UUVs) are becoming a key technology for ocean exploration. Ocean thermal gradient is a permanent and reliable energy source that can be used to power UUVs using phase change material (PCM)-based thermal engines. When using PCM-based thermal engines to power UUVs, there are different energy conversion stages: thermal, hydraulic, kinetic, and electrical, dependent on a wide variety of parameters. Thus, optimization of the overall energy conversion is still a challenge for powering the increasing energy demanding UUVs for long missions. The goal of this study is to propose a PCM-based ocean thermal energy harvesting system for powering float-type UUVs such as the SOLO-II float. This reduces the cost of battery replacement and expands the float's mission time. For this purpose, we developed a theoretical model consisting of hydraulic and electrical systems, designed to provide the electrical power needed by the UUV. The hydraulic and electrical systems are implemented using matlab/simulink. Parameter values from the literature and an accumulator size of 3.78 L are used. The mass of PCM calculated for the energy harvesting system is 5.73 kg, providing a theoretical volume change of 0.78 L. Varying the value of the electrical load connected to the electrical generator, the developed model can, theoretically, provide 13.66 kJ of electrical energy, which is more than 1.5 times the energy requirement per cycle for the SOLO-II float.

References

1.
Thomalla
,
S. J.
,
Nicholson
,
S.-A.
,
Ryan-Keogh
,
T. J.
, and
Smith
,
M. E.
,
2023
, “
Widespread Changes in Southern Ocean Phytoplankton Blooms Linked to Climate Drivers
,”
Nat. Clim. Change
,
13
(
9
), pp.
975
984
.
2.
Petersen
,
S.
,
Krätschell
,
A.
,
Augustin
,
N.
,
Jamieson
,
J.
,
Hein
,
J. R.
, and
Hannington
,
M. D.
,
2016
, “
News From the Seabed—Geological Characteristics and Resource Potential of Deep-Sea Mineral Resources
,”
Mar. Pol.
,
70
, pp.
175
187
.
3.
Zhang
,
S.
,
2011
, “
Impact of Observation-Optimized Model Parameters on Decadal Predictions: Simulation With a Simple Pycnocline Prediction Model
,”
Geophys. Res. Lett.
,
38
(
2
).
4.
Hotaling
,
Liesl
, and
Spinrad
,
Richard W.
,
2021
, “Exploration and Technology—Key Building Blocks for the New Blue Economy,”
Preparing a Workforce for the New Blue Economy: People, Products and Policies
, 1st ed.,
Elsevier
,
New York
, pp.
3
16
.
5.
Cisneros-Montemayor
,
A. M.
,
Moreno-Báez
,
M.
,
Reygondeau
,
G.
,
Cheung
,
W. W. L.
,
Crosman
,
K. M.
,
González-Espinosa
,
P. C.
,
Lam
,
V. W. Y.
, et al
,
2021
, “
Enabling Conditions for an Equitable and Sustainable Blue Economy
,”
Nature
,
591
(
7850
), pp.
396
401
.
6.
Su
,
F.
,
Fan
,
R.
,
Yan
,
F.
,
Meadows
,
M.
,
Lyne
,
V.
,
Hu
,
P.
,
Song
,
X.
, et al
,
2023
, “
Widespread Global Disparities Between Modelled and Observed Mid-Depth Ocean Currents
,”
Nat. Commun.
,
14
(
1
), p.
2089
.
7.
Le Traon
,
P.-Y.
,
D’Ortenzio
,
F.
,
Babin
,
M.
,
Leymarie
,
E.
,
Marec
,
C.
,
Pouliquen
,
S.
,
Thierry
,
V.
, et al
,
2020
, “
Preparing the New Phase of Argo: Scientific Achievements of the NAOS Project
,”
Front. Mar. Sci.
,
7
, p.
577408
.
8.
Whitt
,
C.
,
Pearlman
,
J.
,
Polagye
,
B.
,
Caimi
,
F.
,
Muller-Karger
,
F.
,
Copping
,
A.
,
Spence
,
H.
, et al
,
2020
, “
Future Vision for Autonomous Ocean Observations
,”
Front. Mar. Sci.
,
7
, p.
697
.
9.
Wang
,
G.
,
Yang
,
Y.
, and
Wang
,
S.
,
2020
, “
Ocean Thermal Energy Application Technologies for Unmanned Underwater Vehicles: A Comprehensive Review
,”
Appl. Energy
,
278
, p.
115752
.
10.
Crimmins
,
D. M.
,
Patty
,
C. T.
,
Beliard
,
M. A.
,
Baker
,
J.
,
Jalbert
,
J. C.
,
Komerska
,
R. J.
,
Chappell
,
S. G.
, and
Blidberg
,
D. R.
,
2006
, “
Long-Endurance Test Results of the Solar-Powered AUV System
,”
OCEANS 2006
,
Boston, MA
,
Sept. 18–21
, pp.
1
5
.
11.
Zhao
,
T.
,
Xu
,
M.
,
Xiao
,
X.
,
Ma
,
Y.
,
Li
,
Z.
, and
Wang
,
Z. L.
,
2021
, “
Recent Progress in Blue Energy Harvesting for Powering Distributed Sensors in Ocean
,”
Nano Energy
,
88
, p.
106199
.
12.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
, “
Performance Assessment of a Novel Solar and Ocean Thermal Energy Conversion Based Multigeneration System for Coastal Areas
,”
ASME J. Sol. Energy Eng.
,
137
(
1
), p.
011013
.
13.
Arunachalam
,
S.
,
2019
, “
Latent Heat Storage: Container Geometry, Enhancement Techniques, and Applications—A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
050801
.
14.
Messenger
,
M. A.
,
Troxler
,
C. J.
,
Melendez
,
I.
,
Freeman
,
T. B.
,
Reed
,
N.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K. S.
,
2023
, “
Mechanical and Thermal Characterization of Phase-Change Material and High-Density Polyethylene Functional Composites for Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061006
.
15.
Elavarasan
,
R. M.
,
Singh
,
P.
,
Leoponraj
,
S.
,
Khanna
,
S.
, and
Chandran
,
M.
,
2022
, “
Solar Photovoltaics Integrated With Hydrated Salt-Based Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051004
.
16.
Webb
,
D. C.
,
Simonetti
,
P. J.
, and
Jones
,
C. P.
,
2001
, “
SLOCUM: An Underwater Glider Propelled by Environmental Energy
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
447
452
.
17.
Xia
,
Q.
,
Muhammad
,
G.
,
Chen
,
B.
,
Zhang
,
F.
,
Zhang
,
Z.
,
Zhang
,
S.
, and
Yang
,
C.
,
2021
, “
Investigation of Self-Driven Profiler With Buoyancy Adjusting System Towards Ocean Thermal Energy
,”
Appl. Sci.
,
11
(
15
), p.
7086
.
18.
Wang
,
G.
,
Yang
,
Y.
,
Wang
,
S.
,
Zhang
,
H.
, and
Wang
,
Y.
,
2019
, “
Efficiency Analysis and Experimental Validation of the Ocean Thermal Energy Conversion With Phase Change Material for Underwater Vehicle
,”
Appl. Energy
,
248
, pp.
475
488
.
19.
Chao
,
Y.
,
2016
, “
Autonomous Underwater Vehicles and Sensors Powered by Ocean Thermal Energy
,”
Oceans 2016
,
Shanghai, China
,
Apr. 10–13
, pp.
16
19
.
20.
Zhang
,
H.
,
Ma
,
X.
, and
Yang
,
Y.
,
2022
, “
An External Ocean Thermal Energy Power Generation Modular Device for Powering Smart Float
,”
Energies
,
15
(
10
), pp.
3747
.
21.
Haldeman
,
C. D.
,
Schofield
,
O.
,
Webb
,
D. C.
,
Valdez
,
T. I.
, and
Jones
,
J. A.
,
2015
, “
Implementation of Energy Harvesting System for Powering Thermal Gliders for Long Duration Ocean Research
,”
OCEANS 2015
,
Washington DC
,
Oct. 19–22
, pp.
1
5
.
22.
Ma
,
Z.
,
Wang
,
Y.
,
Wang
,
S.
, and
Yang
,
Y.
,
2016
, “
Ocean Thermal Energy Harvesting With Phase Change Material for Underwater Glider
,”
Appl. Energy
,
178
, pp.
557
566
.
23.
Wang
,
G.
,
Yang
,
Y.
, and
Wang
,
S.
,
2022
, “
Thermophysical Properties Analysis of Graphene-Added Phase Change Materials and Evaluation of Enhanced Heat Transfer Effect in Underwater Thermal Vehicles
,”
J. Mol. Liq.
,
348
, p.
118048
.
24.
Wang
,
G.
,
Yang
,
Y.
,
Wang
,
S.
,
Zhang
,
H.
, and
Wang
,
Y.
,
2020
, “
Modification of the Phase Change Transfer Model for Underwater Vehicles: A Molecular Dynamics Approach
,”
Int. J. Energy Res.
,
44
(
14
), pp.
11323
11344
.
25.
Stommel
,
H.
,
1989
, “
The Slocum Mission
,”
Oceanography
,
2
(
1
), pp.
22
25
.
26.
Jung
,
H.
,
Subban
,
C. V.
,
McTigue
,
J. D.
,
Martinez
,
J. J.
,
Copping
,
A. E.
,
Osorio
,
J.
,
Liu
,
J.
, and
Deng
,
Z. D.
,
2022
, “
Extracting Energy From Ocean Thermal and Salinity Gradients to Power Unmanned Underwater Vehicles: State of the Art, Current Limitations, and Future Outlook
,”
Renewable Sustainable Energy Rev.
,
160
, p.
112283
.
27.
Morris
,
T.
,
Scanderbeg
,
M.
,
West-Mack
,
D.
,
Gourcuff
,
C.
,
Poffa
,
N.
,
Bhaskar
,
T. V. S. U.
,
Hanstein
,
C.
, et al
,
2024
, “
Best Practices for Core Argo Floats—Part 1: Getting Started and Data Considerations
,”
Front. Mar. Sci.
,
11
, p.
1358042
.
28.
Bruvik
,
E. E.
,
Fer
,
I.
,
Väge
,
K.
, and
Haugan
,
P. M.
,
2020
, “
A Revised Ocean Glider Concept to Realize Stommel's Vision and Supplement Argo Floats
,”
Ocean Sci.
,
16
(
2
), pp.
291
305
.
29.
Roemmich
,
D.
,
Sherman
,
J. T.
,
Davis
,
R. E.
,
Grindley
,
K.
,
McClune
,
M.
,
Parker
,
C. J.
,
Black
,
D. N.
, et al
,
2019
, “
Deep SOLO: A Full-Depth Profiling Float for the Argo Program
,”
J. Atmos. Oceanic Technol.
,
36
(
10
), pp.
1967
1981
.
30.
Yang
,
Y.
,
Wang
,
Y.
,
Ma
,
Z.
, and
Wang
,
S.
,
2016
, “
A Thermal Engine for Underwater Glider Driven by Ocean Thermal Energy
,”
Appl. Therm. Eng.
,
99
, pp.
455
464
.
31.
Liu
,
T.
,
Sha
,
H.
,
Li
,
M.
,
Sun
,
M.
,
Chen
,
G.
,
Jiang
,
D.
, and
Song
,
Y.
,
2022
, “
Theoretical Analyses on a Piston-Based Thermal Engine for Thermal Underwater Glider
,”
Appl. Therm. Eng.
,
213
, p.
118718
.
32.
Leon-Quiroga
,
J.
,
Newell
,
B.
,
Krishnamurthy
,
M.
,
Gonzalez-Mancera
,
A.
, and
Garcia-Bravo
,
J.
,
2020
, “
Energy Efficiency Comparison of Hydraulic Accumulators and Ultracapacitors
,”
Energies
,
13
(
7
), p.
1632
.
33.
Accumulators, Inc.
, “Available Models—Bladder Accumulators,” https://www.accumulators.com/bladder-accumulators/available-models/#1489519840336-83650bcf-2f7b.
34.
Chen
,
Y.
,
Chen
,
B.
,
He
,
M.
,
Zhang
,
L.
,
Xia
,
Q.
, and
Yang
,
C.
,
2022
, “
Performance Study of Energy Conversion System for Ocean Thermal Profiler
,”
Front. Mar. Sci.
,
9
, p.
996204
.
35.
Hou
,
H.
,
Arredondo Galeana
,
A.
,
Song
,
Y.
,
Xu
,
G.
,
Xu
,
Y.
, and
Shi
,
W.
,
2023
, “
Design of a Novel Energy Harvesting Mechanism for Underwater Gliders Using Thermal Buoyancy Engines
,”
Ocean Eng.
,
278
, p.
114310
.
36.
Sliwinski
,
P.
, and
Patrosz
,
P.
,
2021
, “The Influence of Water and Mineral Oil on Pressure Losses in Hydraulic Motor,”
Advances in Hydraulic and Pneumatic Drives and Control 2020. NSHP 2020. Lecture Notes in Mechanical Engineering
,
J.
Stryczek
, and
U.
Warzyńska
, eds.,
Springer
,
Cham
.
37.
MathWorks
, “Fixed-Displacement Motor (IL),” https://www.mathworks.com/help/hydro/ref/fixeddisplacementmotoril.html.
39.
Xia
,
Q.
,
Chen
,
Y.
,
Yang
,
C.
,
Chen
,
B.
,
Muhammad
,
G.
, and
Ma
,
X.
,
2020
, “
Maximum Efficiency Point Tracking for an Ocean Thermal Energy Harvesting System
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2693
2703
.
40.
Benadli
,
R.
,
Frey
,
D.
,
Lembeye
,
Y.
,
Bjaoui
,
M.
,
Khiari
,
B.
, and
Sellami
,
A.
,
2023
, “
A Direct Backstepping Super-Twisting Algorithm Controller MPPT for a Standalone Photovoltaic Storage System: Design and Real-Time Implementation
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061002
.
You do not currently have access to this content.