Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The ground ultraviolet (UV) solar radiation is relevant due to its impacts on plastics degradation (mainly UVA) and on human health (UVB and erithemic UV (UVE)). UV ground measurements are not as ubiquitous as the relatively common global horizontal irradiance (GHI) measurements. Three simple models that estimate the UVA, UVB, and UVE components of solar irradiance from GHI and ozone column information are locally adjusted and validated. Five one-minute datasets from three sites in southeastern South America and two in the United States are used for simultaneous solar irradiance and UV data. All sites correspond to temperate mid-latitude regions. Simultaneous atmospheric total ozone column information is obtained from the reanalysis modern-era retrospective analysis for research and applications (MERRA-2) database for each site. Aside from locally adjusted models, average models with a single set of coefficients are also evaluated. For instance, the best average model is able to estimate UVE with a typical uncertainty below 12% and mean biases between ±3%, relative to the average of the measurements. Similar results are reported for the UVB and UVA components. These results, which can be useful in regions with similar climate and geography, provide a simple way to estimate UV irradiance under all-sky conditions with known uncertainty. This is an alternative to global satellite-based UV estimates, which can have high uncertainties at specific locations. Because MERRA-2 information has a global coverage, when coupled with good satellite-based estimates for GHI, UV irradiances can be estimated by this method over a large territory.

References

1.
Modenese
,
A.
,
2022
, “
Prevention of Health Risks Related to Occupational Solar Ultraviolet Radiation Exposure in Times of Climate Change and COVID-19 Pandemic
,”
Atmosphere
,
13
(
7
), p.
1147
.
2.
Bojilova
,
R.
,
Mukhtarov
,
P.
, and
Miloshev
,
N.
,
2022
, “
Dependence of the Index of Biologically Active Ultraviolet Radiation on the Season and Time of Day
,”
Atmosphere
,
13
(
9
), p.
1455
.
3.
Pickett
,
J. E.
,
White
,
K. M.
, and
White
,
C. C.
,
2018
, “Chapter 1 - Service Life Prediction: Why Is This So Hard?”. In
Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering
, C. C. White, K. M. White, and J. E. Pickett, eds.,
Plastics Design Library. William Andrew Publishing
, pp.
1
18
.
4.
Wohlgemuth
,
J.
, and
Kurtz
,
S.
,
2014
, International PV QA Task Force’s Proposed Comparative Rating System for PV Modules. Technical Report NREL/CP-5J00-62846, National Renewable Energy Laboratory (NREL).
5.
International Organization for Standardization (ISO) and Commission Internationale de l’Eclairage (CIE), 2019. Erythema Reference Action Spectrum and Standard Erythema Dose. Standard ISO/CIE 17166:2019(E).
6.
Commission Internationale de l’Eclairage and World Meteorological Organization (CIE), 2014. Rationalizing Nomenclature for UV Doses and Effects on Humans. WMO/GAW Report 211, World Meteorological Organization.
7.
Kosmopoulos
,
P. G.
,
Kazadzis
,
S.
,
Schmalwieser
,
A. W.
,
Raptis
,
P. I.
,
Papachristopoulou
,
K.
,
Fountoulakis
,
I.
,
Masoom
,
A.
, et al.,
2021
, “
Real-Time UV Index Retrieval in Europe Using Earth Observation-Based Techniques: System Description and Quality Assessment
,”
Atmos. Measure. Techn.
,
14
(
8
), pp.
5657
5699
.
8.
Rigollier
,
C.
,
Lefevre
,
M.
, and
Wald
,
L.
,
2004
, “
The Method Heliosat-2 for Deriving Shortwave Solar Radiation From Satellite Images
,”
Sol. Energy
,
77
(
2
), pp.
159
169
.
9.
Qu
,
Z.
,
Oumbe
,
A.
,
Blanc
,
P.
,
Espinar
,
B.
,
Gesell
,
G.
,
Gschwind
,
B.
,
Klüser
,
L.
, et al.,
2017
, “
Fast Radiative Transfer Parameterisation for Assessing the Surface Solar Irradiance: The Heliosat-4 Method
,”
Meteorol. Zeitschrift
,
26
(
1
), pp.
33
57
.
10.
Laguarda
,
A.
,
Giacosa
,
G.
,
Alonso-Suárez
,
R.
, and
Abal
,
G.
,
2020
, “
Performance of the Site-Adapted CAMS Database and Locally Adjusted Cloud Index Models for Estimating Global Solar Horizontal Irradiation Over the Pampa Húmeda Region
,”
Sol. Energy
,
199
, pp.
295
307
.
11.
Sengupta
,
M.
,
Xie
,
Y.
,
Lopez
,
A.
,
Habte
,
A.
,
Maclaurin
,
G.
, and
Shelby
,
J.
,
2018
, “
The National Solar Radiation Data Base (NSRDB)
,”
Renew. Sustain. Energy Rev.
,
89
, pp.
51
60
.
12.
Schroedter-Homscheidt
,
M.
,
Hoyer-Klick
,
C.
,
Killius
,
N.
,
Betcke
,
J.
,
Lefevre
,
M.
,
Wald
,
L.
,
Wey
,
E.
, and
Saboret
,
L.
,
2018
, User’s Guide to the CAMS Radiation Service. Technical Report, Copernicus Atmosphere Monitoring Service, December.
13.
Laguarda
,
A.
, and
Abal
,
G.
,
2019
, “
Assessment of Empirical Models to Estimate UV-A, UV-B and UV-E Solar Irradiance From GHI
,”
Proceedings of the ISES Solar World Congress 2019
,
Santiago, Chile
,
Nov. 3–7
,
Resource Assessment and Energy Meteorology
.
14.
Habte
,
A.
,
Sengupta
,
M.
,
Gueymard
,
C. A.
,
Narasappa
,
R.
,
Rosseler
,
O.
, and
Burns
,
D. M.
,
2019
, “
Estimating Ultraviolet Radiation From Global Horizontal Irradiance
,”
IEEE J. Photovolt.
,
9
(
1
), pp.
139
146
.
15.
Iqbal
,
M.
,
1983
,
An Introduction to Solar Radiation
,
Academic Press
,
New York
.
16.
Burrows
,
J. P.
,
Richter
,
A.
,
Dehn
,
A.
,
Deters
,
B.
,
Himmelmann
,
S.
,
Voigt
,
S.
, and
Orphal
,
J.
,
1999
, “
Atmospheric Remote-Sensing Reference Data From GOME-2. Temperature-Dependent Absorption Cross Sections of O3 in the 231–794 Nm Range
,”
J. Quant. Spectrosc. Radiat. Transfer
,
61
(
4
), pp.
509
517
.
17.
Peel
,
M. C.
,
Finlayson
,
B. L.
, and
McMahon
,
T. A.
,
2007
, “
Updated World Map of the Köppen-Geiger Climate Classification
,”
Hydrol. Earth Syst. Sci.
,
11
(
5
), pp.
1633
1644
.
18.
Stoffel
,
T.
, and
Andreas
,
A.
,
1981
, NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS). Technical Report, NREL Report No. DA-5500-56488.
19.
McArthur
,
L.
,
2005
, Baseline Surface Radiation Network Operations Manual. Technical Report WCRP-121/ WMO TD-No. 1274, World Climate Research Programme - WMO, April.
20.
Gelaro
,
R.
,
McCarty
,
W.
,
Suárez
,
M.
,
Todling
,
R.
,
Molod
,
A.
,
Takacs
,
L.
,
Randles
,
C.
, et al.,
2017
, “
The Modern-Era Retrospectiveanalysis for Research and Applications, Version 2 (MERRA-2)
,”
J. Climate
,
30
(
14
), pp.
5419
5454
.
21.
Laguarda
,
A.
,
2021
, “Modelado De La Irradiancia Solar Sobre La Superficie Terrestre: Modelos Físicos e híbridos Utilizando Información satelital Sobre La Pampa Húmeda”. Ph.D. thesis, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay, 2.
22.
Young
,
A.
,
1994
, “
Air Mass and Refraction
,”
Appl. Opt.
,
33
(
6
), pp.
1108
1110
.
23.
Zhang
,
J.
,
Florita
,
A.
,
Hodge
,
B.-M.
,
Lu
,
S.
,
Hamann
,
H. F.
,
Banunarayanan
,
V.
, and
Brockway
,
A. M.
,
2015
, “
A Suite of Metrics for Assessing the Performance of Solar Power Forecasting
,”
Sol. Energy
,
111
, pp.
157
175
.
24.
Espinar
,
B.
,
Ramírez
,
L.
,
Drews
,
A.
,
Beyer
,
H. G.
,
Zarzalejo
,
L. F.
,
Polo
,
J.
, and
Marín
,
L.
,
2009
, “
Analysis of Different Comparison Parameters Applied to Solar Radiation Data From Satellite and German Radiometric Stations
,”
Sol. Energy
,
83
(
1
), pp.
118
125
.
25.
Long
,
C.
, and
Shi
,
Y.
,
2008
, “
An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements
,”
Open Atmos. Sci. J.
,
2
, pp.
23
37
.
You do not currently have access to this content.