Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Radiative cooling materials (RCMs) based on polymers, which reflect solar irradiance (0.24–2.5 μm) strongly and emit radiation within atmospheric window (8–13 μm) intensively, have yielded obvious cooling performance. However, RCMs reported failed to realize high mid-wave infrared (2.5–8 μm) reflectance (i.e., spectral selectivity), which play an important role in rejecting the radiation from the ambient, especially in high relative humidity. Thus, enhancing the reflectance of RCMs in mid-wave infrared can further strengthen the cooling effect in an environment of high relative humidity. The additive of fillers with high reflectance in mid-wave infrared is effective, low cost, and convenient to modify the cooling performance of polymeric RCMs. In this article, micron rectangular bismuth oxychloride (BiOCl) powders were proposed and synthesized using the hydrothermal method. Rectangular BiOCl boasts excellent mid-wave infrared reflective capacity (85%). Then, rectangular BiOCl was added into the top layer of flexible hierarchically porous complex membrane and improved the reflectance of porous membrane within 2.5–8 μm from 48.3% to 58.1%. However, the emittance of the obtained bilayer membrane within the atmospheric window was hardly affected. The membrane with BiOCl exhibited better cooling performance in humid ambient (70%), demonstrating the importance of spectral selectivity experimentally. This work proposed an effective strategy to modify the spectral selectivity of RCMs, and it could expand the application of radiative cooling materials in hot and humid areas.

References

1.
Wang
,
J.
,
Sun
,
J.
,
Guo
,
T.
,
Zhang
,
H.
,
Xie
,
M.
,
Yang
,
J.
,
Jiang
,
X.
,
Chu
,
Z.
,
Liu
,
D.
, and
Bai
,
S.
,
2022
, “
High-Strength Flexible Membrane With Rational Pore Architecture as a Selective Radiator for High-Efficiency Daytime Radiative Cooling
,”
Adv. Mater. Technol.
,
7
(
1
), p.
2100528
.
2.
Zhao
,
B.
,
Hu
,
M.
,
Ao
,
X.
,
Chen
,
N.
, and
Pei
,
G.
,
2019
, “
Radiative Cooling: A Review of Fundamentals, Materials, Applications, and Prospects
,”
Appl. Energy
,
236
, pp.
489
513
.
3.
Ko
,
B.
,
Dasol
,
L.
,
Trevon
,
B.
, and
Rho
,
J.
,
2019
, “
Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling
,”
Energies
,
12
(
1
), p.
89
.
4.
Hossain
,
M. M.
,
Jia
,
B. H.
, and
Gu
,
M.
,
2015
, “
A Metamaterial Emitter for Highly Efficient Radiative Cooling
,”
Adv. Opt. Mater.
,
3
(
8
), pp.
1047
1051
.
5.
Mandal
,
J.
,
Fu
,
Y.
,
Overvig
,
A. C.
,
Jia
,
M.
,
Sun
,
K.
,
Shi
,
N. N.
,
Zhou
,
H.
,
Xiao
,
X.
,
Yu
,
N.
, and
Yang
,
Y.
,
2018
, “
Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling
,”
Science
,
362
(
6412
), pp.
315
319
.
6.
Hossain
,
M. M.
, and
Min
,
G.
,
2016
, “
Radiative Cooling: Principles, Progress, and Potentials
,”
Adv. Sci.
,
3
(
7
), p.
1500360
.
7.
Li
,
D.
,
Liu
,
X.
,
Li
,
W.
,
Lin
,
Z.
,
Zhu
,
B.
,
Li
,
Z.
,
Li
,
J.
, et al
,
2020
, “
Scalable and Hierarchically Designed Polymer Film as a Selective Thermal Emitter for High-Performance All-Day Radiative Cooling
,”
Nat. Nanotechnol.
,
16
(
2
), pp.
153
158
.
8.
Wang
,
T.
,
Wu
,
Y.
,
Shi
,
L.
,
Hu
,
X.
,
Chen
,
M.
, and
Wu
,
L.
,
2021
, “
A Structural Polymer for Highly Efficient All-Day Passive Radiative Cooling
,”
Nat. Commun.
,
365
(
1
), p.
20646
.
9.
Feng
,
C.
,
Yang
,
P.
,
Liu
,
H.
,
Mao
,
M.
,
Liu
,
Y.
,
Xue
,
T.
,
Fu
,
J.
, et al
,
2021
, “
Bilayer Porous Polymer for Efficient Passive Building Cooling
,”
Nano Energy
,
85
, p.
105971
.
10.
Zhao
,
H.
,
Sun
,
Q.
,
Zhou
,
J.
,
Deng
,
X.
, and
Cui
,
J.
,
2020
, “
Switchable Cavitation: Switchable Cavitation in Silicone Coatings for Energy Saving Cooling and Heating
,”
Adv. Mater.
,
32
(
29
), p.
2000870
.
11.
Catalanotti
,
S.
,
Cuomo
,
V.
,
Piro
,
G.
,
Ruggi
,
D.
,
Silvestrini
,
V.
, and
Troise
,
G.
,
1975
, “
The Radiative Cooling of Selective Surfaces
,”
Sol. Energy
,
17
, pp.
83
89
.
12.
Bao
,
H.
,
Yan
,
C.
,
Wang
,
B. X.
,
Fang
,
X.
,
Zhan
,
C. Y.
, and
Ruan
,
X. L.
,
2017
, “
Double-Layer Nanoparticle-Based Coatings for Efficient Terrestrial Radiative Cooling
,”
Sol. Energy Mater. Sol. Cells
,
168
, pp.
78
84
.
13.
Chai
,
J. L.
,
Cheng
,
Q.
,
Si
,
M. T.
,
Su
,
Y.
,
Zhou
,
Y. F.
, and
Song
,
J. L.
,
2017
, “
Numerical Simulation of White Double-Layer Coating With Different Submicron Particles on the Spectral Reflectance
,”
J. Quant. Spectrosc. Radiat. Transfer
,
189
, pp.
176
180
.
14.
Xu
,
Z.
,
Li
,
N.
,
Liu
,
D.
,
Huang
,
X.
,
Wang
,
J.
,
Wu
,
W.
,
Zhang
,
H.
,
Liu
,
H.
,
Zhang
,
Z.
, and
Zhong
,
M.
,
2018
, “
A New Crystal Mg11(HPO3)8(OH)6 for Daytime Radiative Cooling
,”
Sol. Energy Mater. Sol. Cells
,
185
, pp.
536
541
.
15.
Su
,
D. G.
,
Fu
,
W. X.
, and
Zhong
,
M. F.
,
2011
, “
Preparation and Performance of Solar Reflection Material NaZnPO4
,”
J. South China Univ. Technol.
,
39
, pp.
104
107
.
16.
Ao
,
X. Z.
,
Hu
,
M. K.
,
Zhao
,
B.
,
Chen
,
N.
,
Pei
,
G.
, and
Zou
,
C. W.
,
2019
, “
Preliminary Experimental Study of a Specular and a Diffuse Surface for Daytime Radiative Cooling
,”
Sol. Energy Mater. Sol. Cells
,
191
, pp.
290
296
.
17.
Zhang
,
J.
,
Han
,
Q.
,
Zhu
,
J.
, and
Wang
,
X.
,
2016
, “
A Facile and Rapid Room-Temperature Route to Hierarchical Bismuth Oxyhalide Solid Solutions With Composition-Dependent Photocatalytic Activity
,”
J. Colloid Interface Sci.
,
477
,
25
33
18.
Gnayem
,
H.
, and
Sasson
,
Y.
,
2013
, “
Hierarchical Nanostructured 3D Flowerlike BiOClxBr1–x Semiconductors With Exceptional Visible Light Photocatalytic Activity
,”
ACS Catal.
,
3
(
2
), pp.
186
191
.
19.
Wang
,
H.
,
Chen
,
S.
, and
Yong
,
D.
,
2017
, “
Giant Electron–Hole Interactions in Confined Layered Structures for Molecular Oxygen Activation
,”
J. Am. Chem. Soc.
,
139
(
13
), pp.
4737
4742
.
20.
Shan
,
L.
,
Bi
,
J.
, and
Liu
,
Y.
,
2018
, “
Roles of BiOCl (001) in Face-to-Faced BiOI (010)/BiOCl (001) Heterojunction
,”
J. Nanopart. Res.
,
20
(
6
), pp.
1
16
.
21.
Peng
,
S.
,
Li
,
L.
,
Zhu
,
P.
,
Wu
,
Y.
,
Srinivasan
,
M.
,
Mhaisalkar
,
S. G.
,
Ramakrishna
,
S.
, and
Yan
,
Q.
,
2013
, “
Controlled Synthesis of BiOCl Hierarchical Self-Assemblies With Highly Efficient Photocatalytic Properties
,”
Chem Asian J.
,
8
(
1
), pp.
258
268
.
22.
Li
,
X.
,
Peoples
,
J.
,
Huang
,
Z.
,
Zhao
,
Z.
,
Qiu
,
J.
, and
Ruan
,
X.
,
2020
, “
Full Daytime Sub-Ambient Radiative Cooling in Commercial-Like Paints With High Figure of Merit
,”
Cell Rep. Phys. Sci.
,
1
(
10
), p.
100221
.
23.
Hunter Fanney
,
A.
,
Healy
,
W.
,
Payne
,
V.
,
Kneifel
,
J.
,
Ng
,
L.
,
Dougherty
,
B.
,
Ullah
,
T.
, and
Omar
,
F.
,
2017
, “
Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061009
.
24.
Boyd
,
M. T.
,
2017
, “
High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
034502
.
25.
Pang
,
W.
,
Zhang
,
Y.
,
Cui
,
Y.
,
Yu
,
H.
,
Liu
,
Y.
, and
Yan
,
H.
,
2018
, “
Building Integrated Photovoltaic Module-Based on Aluminum Substrate With Forced Water Cooling
,”
ASME J. Sol. Energy Eng.
,
140
(
2
), p.
021005
.
26.
Heidari
,
L.
,
Younger
,
M.
,
Chandler
,
G.
,
Gooch
,
J.
, and
Schramm
,
P.
,
2017
, “
Integrating Health Into Buildings of the Future
,”
ASME J. Sol. Energy Eng.
,
139
(
1
), p.
010802
.
You do not currently have access to this content.