Abstract

Heat transfer from and to fluidized beds is involved in many applications including chemical processes, power generation, solar collectors, etc. It is generally desired to operate in the range in which the heat transfer coefficient is maximum. Several good correlations have been developed for maximum heat transfer to objects immersed in fluidized beds. However, there is no correlation for maximum heat transfer between the fluidized bed and its enclosing wall. The present research was done to develop such a correlation. A correlation for maximum heat transfer to bed wall has been developed which is in satisfactory agreement with test data from published papers. The data include a wide variety of particles with diameters 70–900 µm, bed diameters 25–101 mm, particle density from 1800 to 3200 kg/m3, particle thermal conductivity 0.5–237 W/m/K, and bed temperature from 18 to 316 °C. A correlation for the optimum velocity was also developed based on the same data. The new heat transfer correlation was compared to published test data for fluidized beds made to flow into solar collector tubes by the application of pressure difference. A modification of it was developed which agrees well with available data.

References

1.
Zabrodsky
,
S. S.
,
1958
, “
The Fundamental Laws of Heat Transfer in Fluidized Beds
,”
Inzh.-Fiz. Zhurn.
,
1
(
3
), pp.
40
51
. Quoted in Zabrodsky [5].
2.
Zabrodsky
,
S. S.
,
Antonishin
,
N. V.
,
Vasiliev
,
G. M.
, and
Paranas
,
A. L.
,
1976
, “
On Fluidized Bed to Surface Heat Transfer
,”
Can. J. Chem. Eng.
,
54
(
Feb./April
), pp.
52
58
.
3.
Shah
,
M. M.
,
2018
, “
General Correlation for Maximum Heat Transfer to Surfaces Submerged in Gas-Fluidized Beds
,”
Chem. Eng. Sci.
,
185
, pp.
127
140
.
4.
Flamant
,
G.
,
Gauthier
,
D.
,
Benoit
,
H.
,
Sans
,
J.
,
Garcia
,
R.
,
Boissiere
,
B.
,
Ansart
,
R.
, and
Hemati
,
M.
,
2013
, “
Dense Suspension of Solid Particles as a New Heat Transfer Fluid for Concentrated Solar Thermal Plants: On-Sun Proof of Concept
,”
Chem. Eng. Sci.
,
102
, pp.
567
576
.
5.
Zabrodsky
,
S. S.
,
1966
,
Hydrodynamics and Heat Transfer in Fluidized Beds
,
MIT Press
,
Cambridge, MA
.
6.
Gelperin
,
N. I.
, and
Einstein
,
V. G.
,
1971
, “Heat Transfer in Fluidized Beds,”
Fluidization
,
J. F.
Davidson
, and
D.
Harrison
, eds.,
Academic Press
,
London
.
7.
Shah
,
M. M.
,
2021
,
Two-Phase Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
8.
Leva
,
M.
,
Weintraub
,
M.
, and
Grummer
,
M.
,
1949
, “
Heat Transmission Through Fluidized Beds of Fine Particles
,”
Chem. Eng. Prog.
,
45
, pp.
563
572
.
9.
Dow
,
W. M.
, and
Jakob
,
M.
,
1951
, “
Heat Transfer Between a Vertical Tube and a Fluidized Air-Solid Flow
,”
Chem Eng. Prog.
,
47
(
12
), pp.
637
648
.
10.
Toomey
,
R. D.
, and
Johnstone
,
H. F.
,
1953
, “
Heat Transfer Between Beds of Fluidized Solids and the Walls of the Container
,”
Chem. Eng. Prog. Symp. Ser.
,
49
, pp.
51
63
.
11.
Mickley
,
H. S.
, and
Trilling
,
C. A.
,
1949
, “
Heat Transfer Characteristics of Fluidized Beds
,”
Ind. Eng. Chem.
,
41
(
6
), pp.
1135
1147
.
12.
Bartholomew
,
R. N.
, and
Katz
,
D. L.
,
1952
, “
Heat Transfer From the Wall of a Tube to a Fluidized Bed
,”
Chem. Eng. Prog. Symp. Ser.
,
4
(
48
), pp.
3
10
.
13.
Van Heerden
,
C.
,
Nobel
,
A. P. P.
, and
Van Krevelen
,
D. W.
,
1951
, “
Studies on Fluidization, II, Heat Transfer
,”
Chem. Eng. Sci.
,
1
(
2
), pp.
51
66
.
14.
Levenspiel
,
O.
, and
Walton
,
J. S.
,
1949
, “
Heat Transfer Coefficients in Beds of Moving Solids
,”
Proceedings of Heat Transfer and Fluid Mechanics Institute
,
Berkeley, CA
, pp.
139
146
.
15.
Levenspiel
,
O.
, and
Walton
,
J. S.
,
1954
, “
Bed Wall Heat Transfer in Fluidized Systems
,”
Chem. Eng. Symp. Ser.
,
9
, pp.
1
13
.
16.
Zhang
,
H.
,
Benoit
,
H.
,
Gauthier
,
D.
,
Degreve
,
J.
,
Baeyens
,
J.
,
Lopez
,
I. P.
,
Hemati
,
M.
, and
Flamant
,
G.
,
2016
, “
Particle Circulation Loops in Solar Energy Capture and Storage: Gas–Solid Flow and Heat Transfer Considerations
,”
Appl. Energy
,
161
, pp.
206
224
.
17.
Varygin
,
N.
, and
Martyushin
,
I. G.
,
1959
, “
A Calculation of Heat Transfer Surface Area in Fluidized Bed Equipment” (in Russian)
,”
Khim Mashinostroenie
,
5
, pp.
6
9
. Quoted in Zabrodsky [5].
18.
Todes
,
O. M.
,
1965
,
Applications of Fluidized Beds in the Chemical Industry, Part II, 4–27, Izd
,
USSR
,
Znanie, Leningrad
. Quoted in Gelperin and Einstein [6].
19.
Shah
,
M. M.
,
1983
, “
Generalized Prediction of Maximum Heat Transfer to Single Cylinders and Spheres in Gas Fluidized Beds
,”
Heat Transfer Eng.
,
4
(
3–4
), pp.
107
122
.
20.
Baskakov
,
A. P.
,
Berg
,
B. V.
,
Fillipovsky
,
N. F.
,
Kirakosyan
,
V. A.
,
Goldobin
,
J. M.
, and
Maskaev
,
V. K.
,
1973
, “
Heat Transfer to Objects Immersed in Fluidized Beds
,”
Powder Technol.
,
8
(
5–6
), pp.
273
282
.
21.
Martin
,
H.
,
1981
, “
Fluid-Bed Heat Exchangers—A New Model for Particle Convective Energy Transfer
,”
Chem. Eng. Commun.
,
13
(
1–3
), pp.
1
16
.
22.
Martin
,
H.
,
1984
, “
Heat Transfer Between Gas Fluidized Beds of Solid Particles and the Surfaces of Immersed Heat Exchanger Elements Part I
,”
Chem. Eng. Process.
,
18
(
3
), pp.
157
169
.
23.
Martin
,
H.
,
1984
, “
Heat Transfer Between Gas Fluidized Beds of Solid Particles and the Surfaces of Immersed Heat Exchanger Elements, Part II
,”
Chem. Eng. Process.
,
18
(
4
), pp.
199
223
.
24.
Wender
,
L.
, and
Cooper
,
G. T.
,
1958
, “
Heat Transfer Between Fluidized-Solids Beds and Boundary Surfaces—Correlation of Data
,”
AIChE J.
,
4
(
1
), pp.
15
23
.
25.
Grace
,
J. R.
,
1982
, “Fluidized Bed Heat Transfer,”
Handbook of Multiphase Flow
,
G.
Hetsroni
, ed.,
Hemisphere Publishing Corp.
,
Washington
, pp.
8-65
8-83
.
26.
Botterill
,
J. S. M.
,
1975
,
Fluid Bed Heat Transfer
,
Academic Press
,
New York
.
27.
Botterill
,
J. S.
, and
Denloye
,
A. O. O.
,
1978
, “
Gas Convective Heat Transfer to Packed and Fluidized Beds
,”
AIChE Symp. Ser.
,
74
(
176
), pp.
194
202
.
28.
Benoit
,
H.
,
Lopez
,
I. P.
,
Gauthier
,
D.
,
Sans
,
J.
, and
Flamant
,
G.
,
2015
, “
On-Sun Demonstration of a 750 °C Heat Transfer Fluid for Concentrating Solar Systems: Dense Particle Suspension in Tube
,”
Sol. Energy
,
118
, pp.
622
633
.
29.
Zhang
,
H.
,
Benoit
,
H.
,
Lopez
,
I. P.
,
Flamant
,
G.
,
Tan
,
T.
, and
Bayaens
,
J.
,
2017
, “
High-Efficiency Solar Power Towers Using Particle Suspensions as Heat Carrier in the Receiver and in the Thermal Energy Storage
,”
Renewable Energy
,
111
, pp.
438
446
.
30.
Zhao
,
Z.
,
Yu
,
Y.
,
Bai
,
F.
, and
Wang
,
Z.
,
2022
, “
Experimental Study on Heat Transfer of Dense Phase Flow Through a Horizontal Tube Under Constant Wall Flux Conditions
,”
Int. J. Therm. Sci.
,
180
, p.
107728
.
31.
Zhao
,
Z.
,
Yu
,
Y.
,
Bei
,
F.
, and
Wang
,
Z.
,
2022
, “
The Characteristics of Flow and Wall-To-Bed Heat Transfer for Vertical Dense-Phase Transport Flow
,”
Exp. Therm. Fluid. Sci.
,
137
, p.
110686
.
32.
Marti
,
J.
,
2015
, “
Gas-Particle Suspensions as High-Temperature Heat Transfer Media for Concentrated Solar Power Applications
,”
Doctorate Dissertation No. 22572
,
ETH
,
Zurich, Switzerland
.
33.
González-Portillo
,
L. F.
,
Albrecht
,
K. J.
,
Sment
,
J.
,
Mills
,
B.
, and
Ho
,
C. K.
,
2022
, “
Sensitivity Analysis of the Levelized Cost of Electricity for a Particle-Based Concentrating Solar Power System
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
030902
.
34.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair J
,
E.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2019
, “
On-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011009
.
35.
Wang
,
Z.
,
Li
,
X.
,
Yao
,
Z.
, and
Zhang
,
M.
,
2010
, “
Concentrating Solar Power Development in China
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021203
.
36.
Ma
,
Z.
, and
Martinek
,
J.
,
2021
, “
Analysis of a Fluidized-Bed Particle/Supercritical-CO2 Heat Exchanger in a Concentrating Solar Power System
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031010
.
You do not currently have access to this content.