Abstract

In the present work, numerical investigations are carried out to study the effect of placing an air curtain at the aperture of the hemispherical cavity receiver of solar parabolic dish collector system to reduce convective heat losses. The effect of parameters like jet angle, jet velocity, cavity inclination, and surface temperature on convective heat loss is considered. The effect of jet angle and velocity plays an important role in controlling the heat losses from the receiver. At jet angle of −20 deg, air impinges inside the receiver surface thus diluting hot air inside the receiver. However, for jet angle of 0 deg and 20 deg, jet controls air escaping out of the receiver. There lies optimum jet velocity which can sustain hot air from leaving receiver. This study shows that using an air curtain for the hemispherical cavity receiver minimizes the convective heat losses up to 45% at optimum jet conditions. The convective heat loss is minimum (192 W) for the jet velocity of 2.5 m/s and jet angle of 20 deg which implies that the best containment effect from the air curtain can be obtained at this condition. Further, an artificial neural network model is formulated to predict the heat losses from the receiver for a range of functional parameters based on numerical simulations.

References

1.
IRENA
,
2022
, “
Renewable Energy Statistics 2022
,” International Renewable Energy Agency, Abu Dhabi, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Renewable_energy_statistics_2022.pdf
2.
Clausing
,
A. M.
,
1981
, “
An Analysis of Convective Losses From Cavity Solar Central Receivers
,”
Sol. Energy
,
27
(
4
), pp.
295
300
.
3.
Paitoonsurikarn
,
S.
,
Lovegrove
,
K.
,
Hughes
,
G.
, and
Pye
,
J.
,
2011
, “
Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021004
.
4.
Wu
,
S. Y.
,
Xiao
,
L.
, and
Li
,
Y. R.
,
2011
, “
Effect of Aperture Position and Size on Natural Convection Heat Loss of a Solar Heat-Pipe Receiver
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2787
2796
.
5.
Prakash
,
M.
,
2014
, “
Numerical Study of Natural Convection Heat Loss From Cylindrical Solar Cavity Receivers
,”
Int. Sch. Res. Notices
,
2014
, p.
104686
.
6.
Zou
,
C.
,
Zhang
,
Y.
,
Feng
,
H.
,
Falcoz
,
Q.
,
Neveu
,
P.
,
Gao
,
W.
, and
Zhang
,
C.
,
2017
, “
Effects of Geometric Parameters on Thermal Performance for a Cylindrical Solar Receiver Using a 3D Numerical Model
,”
Energy Convers. Manag.
,
149
, pp.
293
302
.
7.
Makhkamov
,
K. K.
, and
Ingham
,
D. B.
,
1999
, “
Two-Dimensional Model of the Air Flow and Temperature Distribution in a Cavity-Type Heat Receiver of a Solar Stirling Engine
,”
ASME J. Sol. Energy Eng.
,
121
(
4
), pp.
210
216
.
8.
Yuan
,
J. K.
,
Ho
,
C. K.
, and
Christian
,
J. M.
,
2015
, “
Numerical Simulation of Natural Convection in Solar Cavity Receivers
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031004
.
9.
Jilte
,
R. D.
,
Nayak
,
J. K.
, and
Kedare
,
S. B.
,
2017
, “
Experimental Investigation on Heat Losses From Differentially Heated Cylindrical Cavity Receiver Used in Paraboloid Concentrator
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031013
.
10.
Reddy
,
K. S.
, and
Sendhil Kumar
,
N.
,
2008
, “
Combined Laminar Natural Convection and Surface Radiation Heat Transfer in a Modified Cavity Receiver of Solar Parabolic Dish
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1647
1657
.
11.
Reddy
,
K. S.
, and
Sendhil Kumar
,
N.
,
2009
, “
An Improved Model for Natural Convection Heat Loss From Modified Cavity Receiver of Solar Dish Concentrator
,”
Sol. Energy
,
83
(
10
), pp.
1884
1892
.
12.
Sendhil Kumar
,
N.
, and
Reddy
,
K. S.
,
2008
, “
Comparison of Receivers for Solar Dish Collector System
,”
Energy Convers. Manag.
,
49
(
4
), pp.
812
819
.
13.
Kasaeian
,
A.
,
Kouravand
,
A.
,
Vaziri Rad
,
M. A.
,
Maniee
,
S.
, and
Pourfayaz
,
F.
,
2021
, “
Cavity Receivers in Solar Dish Collectors: A Geometric Overview
,”
Renew. Energy
,
169
, pp.
53
79
.
14.
Bellos
,
E.
,
Bousi
,
E.
,
Tzivanidis
,
C.
, and
Pavlovic
,
S.
,
2019
, “
Optical and Thermal Analysis of Different Cavity Receiver Designs for Solar Dish Concentrators
,”
Energy Convers. Manag. X
,
2
, p.
100013
.
15.
Kopalakrishnaswami
,
A. S.
, and
Natarajan
,
S. K.
,
2022
, “
Comparative Study of Modified Conical Cavity Receiver With Other Receivers for Solar Paraboloidal Dish Collector System
,”
Environ. Sci. Pollut. Res.
,
29
, pp.
7548
7558
.
16.
Jilte
,
R. D.
,
Kedare
,
S. B.
, and
Nayak
,
J. K.
,
2012
, “
Comparison of Cavity Receivers With and Without Mouth-Blockage of Different Shapes and Sizes Used in Paraboloid Dish Applications
,”
J. Fundam. Renew. Energy Appl.
,
2
, pp.
1
6
.
17.
Tan
,
Y.
,
Zhao
,
L.
,
Bao
,
J.
, and
Liu
,
Q.
,
2014
, “
Experimental Investigation on Heat Loss of Semi-Spherical Cavity Receiver
,”
Energy Convers. Manag.
,
87
, pp.
576
583
.
18.
Vikram
,
T. S.
, and
Reddy
,
K. S.
,
2014
, “
Estimation of Heat Losses From Modified Cavity Mono-Tube Boiler Receiver of Solar Parabolic Dish for Steam Generation
,”
Energy Procedia
,
57
, pp.
371
380
.
19.
Vikram
,
T. S.
, and
Reddy
,
K. S.
,
2015
, “
Investigation of Convective and Radiative Heat Losses From Modified Cavity Based Solar Dish Steam Generator Using ANN
,”
Int. J. Therm. Sci.
,
87
, pp.
19
30
.
20.
Reddy
,
K. S.
,
Vikram
,
T. S.
, and
Veershetty
,
G.
,
2015
, “
Combined Heat Loss Analysis of Solar Parabolic Dish–Modified Cavity Receiver for Superheated Steam Generation
,”
Sol. Energy
,
121
, pp.
78
93
.
21.
Reddy
,
K. S.
,
Veershetty
,
G.
, and
Vikram
,
T. S.
,
2016
, “
Effect of Wind Speed and Direction on Convective Heat Losses From Solar Parabolic Dish Modified Cavity Receiver
,”
Sol. Energy
,
131
, pp.
183
198
.
22.
Uhlig
,
R.
,
Flesch
,
R.
,
Gobereit
,
B.
,
Giuliano
,
S.
, and
Liedke
,
P.
,
2014
, “
Strategies Enhancing Efficiency of Cavity Receivers
,”
Energy Procedia
,
49
, pp.
538
550
.
23.
Li
,
Y.
,
Liu
,
G.
,
Rao
,
Z.
, and
Liao
,
S.
,
2015
, “
Field Synergy Principle Analysis for Reducing Natural Convection Heat Loss of a Solar Cavity Receiver
,”
Renew. Energy
,
75
, pp.
257
265
.
24.
Cui
,
F.
,
He
,
Y.
,
Cheng
,
Z.
, and
Li
,
Y.
,
2013
, “
Study on Combined Heat Loss of a Dish Receiver With Quartz Glass Cover
,”
Appl. Energy
,
112
, pp.
690
696
.
25.
Ngo
,
L. C.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2015
, “
Three-Dimensional Analysis and Numerical Optimization of Combined Natural Convection and Radiation Heat Loss in Solar Cavity Receiver With Plate Fins Insert
,”
Energy Convers. Manag.
,
101
, pp.
757
766
.
26.
Torres
,
J. F.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
, and
Pye
,
J.
,
2019
, “
Convective Heat Loss From a Bladed Solar Receiver
,”
SolarPACES 2018
,
Casablanca, Morocco
,
Oct. 2–5
,
AIP Conf. Proc.
, Vol.
2126
, p.
030059
.
27.
Zhang
,
J. J.
,
Pye
,
J. D.
, and
Hughes
,
G. O.
,
2015
, “
Active Air Flow Control to Reduce Cavity Receiver Heat Loss
,”
ASME 2015 9th International Conference on Energy Sustainability
,
San Diego, CA
,
June 28–July 2
, ASME Paper No. ES2015-49710.
28.
Yang
,
S.
,
Wang
,
J.
,
Lund
,
P. D.
,
Wang
,
S.
, and
Jiang
,
C.
,
2018
, “
Reducing Convective Heat Losses in Solar Dish Cavity Receivers Through a Modified Air-Curtain System
,”
Sol. Energy
,
166
, pp.
50
58
.
29.
Alipourtarzanagh
,
E.
,
Chinnici
,
A.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2020
, “
Experimental Insights Into the Mechanism of Heat Losses From a Cylindrical Solar Cavity Receiver Equipped With an Air Curtain
,”
Sol. Energy
,
201
, pp.
314
322
.
30.
Flesch
,
R.
,
Grobbel
,
J.
,
Stadler
,
H.
,
Uhlig
,
R.
, and
Hoffschmidt
,
B.
,
2016
, “
Reducing the Convective Losses of Cavity Receivers
,”
SOLARPACES 2015: International Conference on Concentrating Solar Power and Chemical Energy Systems
,
Cape Town, South Africa
,
Oct. 13–16
,
AIP Conf. Proc.
, Vol.
1734
, No.
1
, p.
030014
.
31.
Fang
,
J.
,
Tu
,
N.
,
Torres
,
J. F.
,
Wei
,
J.
, and
Pye
,
J. D.
,
2019
, “
Numerical Investigation of the Natural Convective Heat Loss of a Solar Central Cavity Receiver With Air Curtain
,”
Appl. Therm. Eng.
,
152
, pp.
147
159
.
32.
Mondal
,
R.
,
Torres
,
J. F.
,
Hughes
,
G.
, and
Pye
,
J. D.
,
2020
, “
Analysis of Air Curtains for Natural Convection Heat-Loss Mitigation
,”
Proceedings of 22nd Australasian Fluid Mechanics Conference AFMC2020
,
Brisbane, Australia
,
Dec. 7–10
,
H.
Chanson
and
R.
Brown
, eds., University of Queensland, pp.
1
4
.
33.
Alipourtarzanagh
,
E.
,
Chinnici
,
A.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2020
, “
Impact of Flow Blowing and Suction Strategies on the Establishment of an Aerodynamic Barrier for Solar Cavity Receivers
,”
Appl. Therm. Eng.
,
180
, p.
115841
.
34.
Chen
,
Y. G.
, and
Yuan
,
X. L.
,
2005
, “
Simulation of a Cavity Insulated by a Vertical Single Band Cold Air Curtain
,”
Energy Convers. Manag.
,
46
(
11–12
), pp.
1745
1756
.
35.
Kaushika
,
N. D.
,
1993
, “
Viability Aspects of Paraboloidal Dish Solar Collector Systems
,”
Renew. Energy
,
3
(
6–7
), pp.
787
793
.
36.
ANSYS Fluent
,
2022
, R1 Student Version User's Guide.
37.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education
,
Harlow, UK
.
38.
Azur Insulation
. “Ceramic Fiber,” https://www.azurinsulation.com/ceramic-fiber/
You do not currently have access to this content.