Abstract

Buildings of the future are expected to not only be energy efficient but also able to offer grid services through implementation of demand-side management strategies by utilizing existing and new technologies that enhance electrical load flexibility. With the high penetration of variable renewables, grid operators have to balance between variable supply with controllable and adaptable demand. This article reviews the current literature on grid-interactive efficient buildings (GEBs) that can provide grid services. In particular, the review identifies categories and examples of measures and technologies that are suitable for GEBs using various criteria. These criteria include demand-side management strategies, potential to provide grid services, technology maturity, as well as ability to model the technologies to perform detailed analyses and assessments in whole-building simulation software.

References

1.
EIA
,
2020
,
Annual Energy Outlook 2020 With Projections to 2050
,
US Energy Information Administration
,
Washington, DC
.
2.
DOE
,
2019
,
Grid-Interactive Efficient Buildings Technical Report Series, Overview of Research Challenges and Gaps
,
US Department of Energy
,
Washington, D.C.
3.
Neme
,
C.
, and
Grevatt
,
J.
,
2015
, “
Energy Efficiency as a T&D Resource: Lessons From Recent U.S. Efforts to Use Geographically Targeted Efficiency Programs to Defer T&D Investments
,” Report for Northeast Energy Efficiency Partnerships (NEEP), Lexington, MA, https://neep.org/sites/default/files/products/EMV-Forum-Geo-Targeting_Final_2015-01-20.pdf
4.
Paterakis
,
N. G.
,
Erdinç
,
O.
, and
Catalão
,
J. P. S.
,
2017
, “
An Overview of Demand Response: Key-Elements and International Experience
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
871
891
. 10.1016/j.rser.2016.11.167
5.
DOE
,
2019
,
U. S. D. of Energy, Grid-Interactive Efficient Buildings Technical Report Series, Windows and Opaque Envelope
,
US Department of Energy
,
Washington, DC
.
6.
Yu
,
S.
,
Cui
,
Y.
,
Shao
,
Y.
, and
Han
,
F.
,
2019
, “
Research on the Comprehensive Performance of Hygroscopic Materials in an Office Building Based on EnergyPlus
,”
Energies
,
12
, pp.
1
17
. 10.3390/en12010191
7.
Shekar
,
V.
, and
Krarti
,
M.
,
2017
, “
Control Strategies for Dynamic Insulation Materials Applied to Commercial Buildings
,”
Energy Build.
,
154
, pp.
305
320
. 10.1016/j.enbuild.2017.08.084
8.
Park
,
B.
,
Srubar
,
W. V.
, and
Krarti
,
M.
,
2015
, “
Energy Performance Analysis of Variable Thermal Resistance Envelopes in Residential Buildings
,”
Energy Build.
,
103
, pp.
317
325
. 10.1016/j.enbuild.2015.06.061
9.
Menyhart
,
K.
, and
Krarti
,
M.
,
2017
, “
Potential Energy Savings From Deployment of Dynamic Insulation Materials for US Residential Buildings
,”
Build. Environ.
,
114
, pp.
203
218
. 10.1016/j.buildenv.2016.12.009
10.
Rupp
,
S.
, and
Krarti
,
M.
,
2019
, “
Analysis of Multi-Step Control Strategies for Dynamic Insulation Systems
,”
Energy Build.
,
204
, p.
109459
. 10.1016/j.enbuild.2019.109459
11.
Dehwah
,
A. H. A.
, and
Krarti
,
M.
,
2020
, “
Impact of Switchable Roof Insulation on Energy Performance of US Residential Buildings
,”
Build. Environ.
,
177
, p.
106882
. 10.1016/j.buildenv.2020.106882
12.
Biswas
,
K.
,
Shrestha
,
S. S.
,
Hun
,
D. E.
, and
Atchley
,
J.
,
2019
, “
Thermally Anisotropic Composites for Improving the Energy Efficiency of Building Envelopes
,”
Energies (Basel)
,
12
, pp.
1
15
. 10.3390/en12193783
13.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
. 10.1016/j.rser.2007.10.005
14.
Waqas
,
A.
, and
Din
,
Z. U.
,
2013
, “
Phase Change Material (PCM) Storage for Free Cooling of Buildings—A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
607
625
. 10.1016/j.rser.2012.10.034
15.
Nghana
,
B.
, and
Tariku
,
F.
,
2016
, “
Phase Change Material's (PCM) Impacts on the Energy Performance and Thermal Comfort of Buildings in a Mild Climate
,”
Build. Environ.
,
99
, pp.
221
238
. 10.1016/j.buildenv.2016.01.023
16.
Yu
,
M.
,
Zhang
,
X.
,
Zhao
,
Y.
, and
Zhang
,
X.
,
2019
, “
A Novel Passive Method for Regulating Both Air Temperature and Relative Humidity of the Micoenvironment in Museum Display Cases
,”
Energies
,
12
(
19
), p.
3760
. 10.3390/en12193760
17.
Wu
,
Z.
,
Qin
,
M.
, and
Zhang
,
M.
,
2018
, “
Phase Change Humidity Control Material and Its Impact on Building Energy Consumption
,”
Energy Build.
,
174
, pp.
254
261
. 10.1016/j.enbuild.2018.06.036
18.
Zhai
,
Y.
,
Ma
,
Y.
,
David
,
S. N.
,
Zhao
,
D.
,
Lou
,
R.
,
Tan
,
G.
,
Yang
,
R.
, and
Yin
,
X.
,
2017
, “
Scalable-Manufactured Randomized Glass-Polymer Hybrid Metamaterial for Daytime Radiative Cooling
,”
Science
,
355
(
6329
), pp.
1062
1066
. 10.1126/science.aai7899
19.
Tripathy
,
M.
,
Sadhu
,
P. K.
, and
Panda
,
S. K.
,
2016
, “
A Critical Review on Building Integrated Photovoltaic Products and Their Applications
,”
Renewable Sustainable Energy Rev.
,
61
, pp.
451
465
. 10.1016/j.rser.2016.04.008
20.
Sehar
,
F.
,
Pipattanasomporn
,
M.
, and
Rahman
,
S.
,
2016
, “
An Energy Management Model to Study Energy and Peak Power Savings From PV and Storage in Demand Responsive Buildings
,”
Appl. Energy
,
173
, pp.
406
417
. 10.1016/j.apenergy.2016.04.039
21.
Cuce
,
E.
, and
Riffat
,
S. B.
,
2015
, “
A State-of-the-Art Review on Innovative Glazing Technologies
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
695
714
. 10.1016/j.rser.2014.08.084
22.
Luo
,
Y.
,
Zhang
,
L.
,
Bozlar
,
M.
,
Liu
,
Z.
,
Guo
,
H.
, and
Meggers
,
F.
,
2019
, “
Active Building Envelope Systems Toward Renewable and Sustainable Energy
,”
Renewable Sustainable Energy Rev.
,
104
, pp.
470
491
. 10.1016/j.rser.2019.01.005
23.
Lee
,
E.
,
Yazdanian
,
M.
, and
Selkowitz
,
S.
,
2004
, “
The Energy-Savings Potential of Electrochromic Windows in the US Commercial Buildings Sector
,”
Lawrence Berkeley National Laboratory
,
Berkeley, CA
, LBNL Report, LBNL-54966.
24.
Belzer
,
D. B.
,
2010
, “
An Exploratory Energy Analysis of Electrochromic Windows in Small and Medium Office Buildings—Simulated Results Using EnergyPlus
,” Report PNNL-19637 for Pacific Northwest National Laboratory, Richland, WA, https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-19637.pdf
25.
Tzempelikos
,
A.
, and
Shen
,
H.
,
2013
, “
Comparative Control Strategies for Roller Shades With Respect to Daylighting and Energy Performance
,”
Build. Environ.
,
67
, pp.
179
192
. 10.1016/j.buildenv.2013.05.016
26.
Nielsen
,
M. V.
,
Svendsen
,
S.
, and
Jensen
,
L. B.
,
2011
, “
Quantifying the Potential of Automated Dynamic Solar Shading in Office Buildings Through Integrated Simulations of Energy and Daylight
,”
Sol. Energy
,
85
(
5
), pp.
757
768
. 10.1016/j.solener.2011.01.010
27.
Hammad
,
F.
, and
Abu-Hijleh
,
B.
,
2010
, “
The Energy Savings Potential of Using Dynamic External Louvers in an Office Building
,”
Energy Build.
,
42
(
10
), pp.
1888
1895
. 10.1016/j.enbuild.2010.05.024
28.
Vlachokostas
,
A.
, and
Madamopoulos
,
N.
,
2016
, “
Quantification of Energy Savings From Dynamic Solar Radiation Regulation Strategies in Office Buildings
,”
Energy Build.
,
122
, pp.
140
149
. 10.1016/j.enbuild.2016.04.022
29.
Wang
,
M.
,
Peng
,
J.
,
Li
,
N.
,
Lu
,
L.
,
Ma
,
T.
, and
Yang
,
H.
,
2016
, “
Assessment of Energy Performance of Semi-Transparent PV Insulating Glass Units Using a Validated Simulation Model
,”
Energy
,
112
, pp.
538
548
. 10.1016/j.energy.2016.06.120
30.
EIA
,
2012
,
Commercial Buildings Energy Consumption Survey
,
US Energy Information Administration
,
Washington, D.C.
31.
Siano
,
P.
,
2014
, “
Demand Response and Smart Grids—A Survey
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
461
478
. 10.1016/j.rser.2013.10.022
32.
EIA
,
2019
,
Electric Power Annual 2018
,
US Energy Information Administration
,
Washington, DC
.
33.
Mayhoub
,
M.
, and
Carter
,
D.
,
2012
, “
A Feasibility Study for Hybrid Lighting Systems
,”
Build. Environ.
,
53
, pp.
83
94
. 10.1016/j.buildenv.2012.01.011
34.
Sarfraz
,
O.
,
Bach
,
C. K.
, and
Wilkins
,
P. E.
,
2018
, “
Plug Load Design Factors
,”
ASHRAE J.
,
60
, pp.
14
19
.
35.
DOE
,
2019
,
Grid-Interactive Efficient Buildings Technical Report Series, Lighting and Electronics
,
US Department of Energy
,
Washington, D.C.
36.
Jenkins
,
C.
,
Young
,
R.
,
Tsau
,
J.
,
Razavi
,
H.
,
Kaplan
,
J.
, and
Ibeziako
,
M. O.
,
2019
, “
Effective Management of Plug Loads in Commercial Buildings With Occupant Engagement and Centralized Controls
,”
Energy Build.
,
201
, pp.
194
201
. 10.1016/j.enbuild.2019.06.030
37.
Alaperä
,
I.
,
Honkapuro
,
S.
, and
Paananen
,
J.
,
2018
, “
Data Centers as a Source of Dynamic Flexibility in Smart Girds
,”
Appl. Energy
,
229
, pp.
69
79
. 10.1016/j.apenergy.2018.07.056
38.
DOE
,
2019
,
Grid-Interactive Efficient Buildings Technical Report Series, HVAC, Water Heating, Appliances and Refrigeration
,
US Department of Energy
,
Washington, D.C.
39.
Jani
,
D. B.
,
Mishra
,
M.
, and
Sahoo
,
P. K.
,
2016
, “
Solid Desiccant Air Conditioning—A State of the Art Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1451
1469
. 10.1016/j.rser.2016.03.031
40.
Alabdulkarem
,
A.
,
Cristiano
,
M.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2015
, “
Design and Testing of a Separate Sensible and Latent Cooling Packaged Terminal Air Conditioning Unit
,”
Proceedings of ASME 9th International Conference on Energy Sustainability
,
San Diego, CA
,
June 28–July 2
http://dx.doi.org/10.1115/ES2015-49065.
41.
Kim
,
M.-H.
,
Park
,
J.-S.
, and
Jeong
,
J.-W.
,
2013
, “
Energy Saving Potential of Liquid Desiccant in Evaporative-Cooling-Assisted 100% Outdoor Air System
,”
Energy
,
59
, pp.
726
736
. 10.1016/j.energy.2013.07.018
42.
Kim
,
M.-H.
,
Park
,
J.-Y.
,
Sung
,
M.-K.
,
Choi
,
A.-S.
, and
Jeong
,
J.-W.
,
2014
, “
Annual Operating Energy Savings of Liquid Desiccant and Evaporative-Cooling-Assisted 100% Outdoor Air System
,”
Energy Build.
,
76
, pp.
538
550
. 10.1016/j.enbuild.2014.03.006
43.
Delfani
,
S.
,
Esmaeelian
,
J.
,
Pasdarshahri
,
H.
, and
Karami
,
M.
,
2010
, “
Energy Saving Potential of an Indirect Evaporative Cooler as a Pre-Cooling Unit for Mechanical Cooling Systems in Iran
,”
Energy Build.
,
42
(
11
), pp.
2169
2176
. 10.1016/j.enbuild.2010.07.009
44.
Gelazanskas
,
L.
, and
Gamage
,
K. A. A.
,
2016
, “
Distributed Energy Storage Using Residential Hot Water Heaters
,”
Energies
,
9
(
3
), p.
127
. 10.3390/en9030127
45.
Fernandez
,
M. Z.
,
Xie
,
Y.
,
Katipamula
,
S.
,
Zhao
,
M.
,
Wang
,
W.
, and
Corbin
,
C.
,
2017
, “
Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction
,” Report PNNL-19637 for Pacific Northwest National Laboratory, Richland, WA, https://buildingretuning.pnnl.gov/publications/PNNL-25985.pdf 10.2172/1400347
46.
Alimohammadisagvand
,
B.
,
Jokisalo
,
J.
,
Kilpeläinen
,
S.
,
Ali
,
M.
, and
Sirén
,
K.
,
2016
, “
Cost-Optimal Thermal Energy Storage System for a Residential Building With Heat Pump Heating and Demand Response Control
,”
Appl. Energy
,
174
, pp.
275
287
. 10.1016/j.apenergy.2016.04.013
47.
Kamal
,
R.
,
Moloney
,
F.
,
Wickramaratne
,
C.
,
Narasimhan
,
A.
, and
Goswami
,
D. Y.
,
2019
, “
Strategic Control and Cost Optimization of Thermal Energy Storage in Buildings Using EnergyPlus
,”
Appl. Energy
,
246
, pp.
77
90
. 10.1016/j.apenergy.2019.04.017
48.
Prieto
,
A.
,
Knaack
,
U.
,
Auer
,
T.
, and
Klein
,
T.
,
2019
, “
COOLFACADE: State-of-the-Art Review and Evaluation of Solar Cooling Technologies on Their Potential for Façade Integration
,”
Renewable Sustainable Energy Rev.
,
101
, pp.
395
414
. 10.1016/j.rser.2018.11.015
49.
Gómez
,
J.
,
Garcia
,
R.
,
Catoira
,
A. M.
, and
Gómez
,
M.
,
2013
, “
Magnetocaloric Effect: A Review of the Thermodynamic Cycles in Magnetic Refrigeration
,”
Renewable Sustainable Energy Rev.
,
17
, pp.
74
82
. 10.1016/j.rser.2012.09.027
50.
Klinar
,
K.
, and
Kitanovski
,
A.
,
2020
, “
Thermal Control Elements for Caloric Energy Conversion
,”
Renewable Sustainable Energy Rev.
,
118
, p.
109571
. 10.1016/j.rser.2019.109571
51.
Cheon
,
S.-Y.
,
Lim
,
H.
, and
Jeong
,
J.-W.
,
2019
, “
Applicability of Thermoelectric Heat Pump in a Dedicated Outdoor Air System
,”
Energy
,
173
, pp.
244
262
. 10.1016/j.energy.2019.02.012
52.
Lim
,
H.
, and
Jeong
,
J.-W.
,
2018
, “
Energy Saving Potential of Thermoelectric Radiant Cooling Panels With a Dedicated Outdoor Air System
,”
Energy Build.
,
169
, pp.
353
365
. 10.1016/j.enbuild.2018.03.062
53.
Park
,
H.
,
Nam
,
K. H.
,
Jang
,
G. H.
, and
Kim
,
M. S.
,
2014
, “
Performance Investigation of Heat Pump–Gas Fired Water Heater Hybrid System and Its Economic Feasibility Study
,”
Energy Build.
,
80
, pp.
480
489
. 10.1016/j.enbuild.2014.05.052
54.
Verda
,
V.
, and
Colella
,
F.
,
2011
, “
Primary Energy Savings Through Thermal Storage in District Heating Networks
,”
Energy
,
36
(
7
), pp.
4278
4286
. 10.1016/j.energy.2011.04.015
55.
Nuytten
,
T.
,
Claessens
,
B.
,
Paredis
,
K.
,
Van Bael
,
J.
, and
Six
,
D.
,
2013
, “
Flexibility of a Combined Heat and Power System With Thermal Energy Storage for District Heating
,”
Appl. Energy
,
104
, pp.
583
591
. 10.1016/j.apenergy.2012.11.029
56.
Kiliccote
,
S.
,
Olsen
,
D.
,
Sohn
,
M. D.
, and
Piette
,
M. A.
,
2016
, “
Characterization of Demand Response in the Commercial, Industrial, and Residential Sectors in the United States
,”
WIREs Energy Environ.
,
5
(
3
), pp.
288
304
. 10.1002/wene.176
57.
Penning
,
J.
,
Stober
,
K.
,
Taylor
,
V.
, and
Yamada
,
M.
,
2016
,
Energy Savings Forecast of Solid-State Lighting in General Illumination Applications
,
US Department of Energy, Solid-State Lighting Program
,
Washington, D.C.
58.
Snyder
,
J.
,
2020
, “
Energy-Saving Strategies for Luminaire-Level Lighting Controls
,”
Build. Environ.
,
169
. 10.1016/j.buildenv.2018.10.026
59.
Wang
,
C.
,
Pattawi
,
K.
, and
Lee
,
H.
,
2020
, “
Energy Saving Impact of Occupancy-Driven Thermostat for Residential Buildings
,”
Energy Build.
,
211
, p.
109791
. 10.1016/j.enbuild.2020.109791
60.
Pourmousavi
,
S. A.
,
Patrick
,
S. N.
, and
Nehrir
,
M. H.
,
2014
, “
Real-Time Demand Response Through Aggregate Electric Water Heaters for Load Shifting and Balancing Wind Generation
,”
IEEE Trans. Smart Grid
,
5
(
2
), pp.
769
778
. 10.1109/TSG.2013.2290084
61.
Finn
,
P.
,
O’Connell
,
M.
, and
Fitzpatrick
,
C.
,
2013
, “
Demand Side Management of a Domestic Dishwasher: Wind Energy Gains, Financial Savings and Peak-Time Load Reduction
,”
Appl. Energy
,
101
, pp.
678
685
. 10.1016/j.apenergy.2012.07.004
62.
Perez
,
K. X.
,
Baldea
,
M.
, and
Edgar
,
T. F.
,
2016
, “
Integrated HVAC Management and Optimal Scheduling of Smart Appliances for Community Peak Load Reduction
,”
Energy Buildings
,
123
, pp.
34
40
. 10.1016/j.enbuild.2016.04.003
63.
Farzamkia
,
S.
,
Ranjbar
,
H.
,
Hatami
,
A.
, and
Iman-Eini
,
H.
,
2016
, “
A Novel PSO (Particle Swarm Optimization)-Based Approach for Optimal Schedule of Refrigerators Using Experimental Models
,”
Energy
,
107
, pp.
707
715
. 10.1016/j.energy.2016.04.069
64.
Glavan
,
M.
,
Gradišar
,
D.
,
Humar
,
I.
, and
Vrančić
,
D.
,
2019
, “
Refrigeration Control Algorithm for Managing Supermarket’s Overall Peak Power Demand
,”
IEEE Trans. Control Syst. Technol.
,
27
(
5
), pp.
2279
2286
. 10.1109/TCST.2018.2853739
65.
Heredia
,
W. B.
,
Chaudhari
,
K.
,
Meintz
,
A.
,
Jun
,
M.
, and
Pless
,
S.
,
2020
, “
Evaluation of Smart Charging for Electric Vehicle-to-Building Integration: A Case Study
,”
Appl. Energy
,
266
, p.
114803
. 10.1016/j.apenergy.2020.114803
66.
Ioakimidis
,
C. S.
,
Thomas
,
D.
,
Rycerski
,
P.
, and
Genikomsakis
,
K. N.
,
2018
, “
Peak Shaving and Valley Filling of Power Consumption Profile in Non-Residential Buildings Using an Electric Vehicle Parking lot
,”
Energy
,
148
, pp.
148
158
. 10.1016/j.energy.2018.01.128
67.
Granderson
,
J.
,
Lin
,
G.
, and
Fernandes
,
S.
,
2015
, “
A Primer on Organizational Use of EMIS
,” Report Prepared for the U.S. DOE Better Buildings Program by Lawrence Berkeley National Laboratory, Berkeley, CA, https://betterbuildingssolutioncenter.energy.gov/sites/default/files/attachments/A_Primer_on_Organizational_Use_of_EMIS_V1.1.pdf.
68.
Kramer
,
H.
,
Lin
,
G.
,
Granderson
,
J.
,
Curtin
,
C.
,
Crowe
,
E.
, and
Tang
,
R.
,
2019
, “
Synthesis of Year Three Outcomes in the Smart Energy Analytics Campaign
,”
Lawrence Berkeley Laboratory
,
Berkeley, CA
,
Report
.
69.
Crawley
,
D. B.
,
Lawrie
,
L. K.
,
Winkelmann
,
F. C.
,
Buhl
,
W. F.
,
Huang
,
Y. J.
,
Pedersen
,
C. O.
,
Strand
,
R. K.
,
Liesen
,
R. J.
,
Fisher
,
D. E.
,
Witte
,
M. J.
, and
Glazer
,
J.
,
2001
, “
EnergyPlus: Creating a New-Generation Building Energy Simulation Program
,”
Energy Build.
,
33
(
4
), pp.
319
331
. 10.1016/S0378-7788(00)00114-6
70.
DOE
,
2020
, “
Application Guide for EMS, EnergyPlus Version 9.4.0
,”
Department of Energy
,
Washington, DC
, Build-998c4b761e, https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v9.4.0/EMSApplicationGuide.pdf, Accessed April 16, 2020.
71.
Biggladder
,
2020
, “
Coupling EnergyPlus With Functional Mock-Up Units for Co-Simulation,” Documentation of EnergyPlus by Biggladder, Denver, CO
,” https://bigladdersoftware.com/epx/docs/8-3/external-interfaces-application-guide/coupling-energyplus-with-functional-mock-up-units.html#:∼:text=In%20the%20current%20implementation%2C%20EnergyPlus,kernel%20and%20other%20simulation%20tools, Accessed April 16, 2020.
72.
Nouidui
,
T. S.
,
Wetter
,
M.
, and
Zuo
,
W.
,
2014
, “
Functional Mock-Up Unit for Co-Simulation Import in EnergyPlus
,”
J. Build. Perform. Simul.
,
7
(
3
), pp.
192
202
. 10.1080/19401493.2013.808265
73.
DOE
,
2020
,
Engineering Reference: EnergyPlus Documentation
,
US Department of Energy
,
Washington, DC
.
74.
Dutta
,
R.
,
2018
, “
Modeling an Electrochromic Window Using a Multi-Criteria Control Strategy
,”
Proceedings of 2018 Building Performance Analysis Conference and SimBuild Co-Organized by ASHRAE and IBPSA-USA
,
Chicago, IL
,
Sept. 26–28
,, pp.
149
156
.
75.
Peng
,
J.
,
Curcija
,
D. C.
,
Lu
,
L.
,
Selkowitz
,
S. E.
,
Yang
,
H.
, and
Zhang
,
W.
,
2016
, “
Numerical Investigation of the Energy Saving Potential of a Semitransparent Photovoltaic Double-Skin Facade in a Cool-Summer Mediterranean Climate
,”
Appl. Energy
,
165
, pp.
345
356
. 10.1016/j.apenergy.2015.12.074
76.
Mitchell
,
R.
,
Kohler
,
C.
,
Klems
,
J.
,
Rubin
,
M.
, and
Arasteh
,
D.
,
2006
,
WINDOW 6.1/THERM 6.1 Research Version User Manual
,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
.
77.
Dyke
,
C.
,
Wymelenberg
,
K. V. D.
,
Djunaedy
,
E.
, and
Steciak
,
J.
,
2015
, “
Comparing Whole Building Energy Implications of Sidelighting Systems With Alternate Manual Blind Control Algorithms
,”
Buildings
,
5
(
2
), pp.
467
496
. 10.3390/buildings5020467
78.
Firlag
,
S.
,
Yazdanian
,
M.
,
Curcija
,
D. C.
,
Kohler
,
C.
,
Vidanovic
,
S.
,
Hart
,
R.
, and
Czarnecki
,
S.
,
2015
, “
Control Algorithms for Dynamic Windows for Residential Buildings
,”
Energy Build.
,
109
, pp.
157
173
. 10.1016/j.enbuild.2015.09.069
79.
Wijesuriya
,
S.
,
Brandt
,
M.
, and
Tabares-Velasco
,
P. C.
,
2018
, “
Parametric Analysis of a Residential Building With Phase Change Material (PCM)-Enhanced Drywall, Precooling, and Variable Electric Rates in a Hot and Dry Climate
,”
Appl. Energy
,
222
, pp.
497
514
. 10.1016/j.apenergy.2018.03.119
80.
Testa
,
J.
, and
Krarti
,
M.
,
2017
, “
Evaluation of Energy Savings Potential of Variable Reflective Roofing Systems for US Buildings
,”
Sustainable Cities Soc.
,
31
, pp.
62
73
. 10.1016/j.scs.2017.01.016
81.
Manwell
,
J. F.
, and
McGowan
,
J. G.
,
2011
, “
A Lead Acid Battery Storage Model for Hybrid Energy Systems
,”
Sol. Energy
,
50
(
5
), pp.
399
405
. 10.1016/0038-092X(93)90060-2
82.
N.
Dichter
and
A.
Aboud
,
2020
, “
Analysis of Greenhouse Gas Emissions From Residential Heating Technologies in the USA
,”
Western Cooling Efficiency Center, University of California Davis
,
Davis, CA
,
Report
, https://wcec.ucdavis.edu/wp-content/uploads/GHG-Emissions-from-Residential-Heating-Technologies-091520.pdf, Accessed June 10, 2020.
83.
Ihm
,
P.
,
Krarti
,
M.
, and
Henze
,
G. P.
,
2004
, “
Development of a Thermal Energy Storage Model for EnergyPlus
,”
Energy Build.
,
36
(
8
), pp.
807
814
. 10.1016/j.enbuild.2004.01.021
84.
Strand
,
R. K.
,
Pedersen
,
C.
, and
Coleman
,
G.
,
1994
, “
Development of Direct and Indirect Ice-Storage Models for Energy Analysis Calculations
,”
ASHRAE Trans.
,
100
, pp.
1230
1244
.
85.
DOE
,
2020
,
EnergyPlus Engineering Reference: On-Site Generation, EnergyPlus Documentation
,
US Department of Energy
,
Washington, DC
. https://www.energyplus.net/sites/default/files/docs/site_v8.3.0/EngineeringReference/14-OnSiteGeneration/index.html#on-site-generation, Accessed June 12, 2020.
You do not currently have access to this content.