Abstract

This paper aims at identifying the impact of three retrofit scenarios of a typical single-family house on its energy performance and its indoor thermal comfort in several climates. Two of these scenarios are based on the Moroccan Thermal Regulation in Constructions (RTCM) while the third is the one proposed in this study. The climates range from group B to group C of the Köppen climate classification. The results show that the proposed renovation scenario allows reducing the heating load by 19–42% and the cooling load by 29–60% depending on the climate. Furthermore, the RTCM retrofit scenario leads to summer overheating in all climates. One of the main reasons for this overheating is the insulation of the slab-on-grade floor as this insulation increases the annual heating/cooling energy needs of the house by 6–10%. Moreover, the cavity wall technique was found to be the best option for external walls, instead of using high thermal insulating material, in hot climates. The analysis of the energy performance, the thermal comfort indices, and the payback periods for each retrofit scenario shows that the proposed scenario presents the best thermal performance, except for the cold climate where the RTCM scenario is the most favorable.

References

1.
Moroccan Agency for Energy Efficiency, AMEE, Morocco
, http://www.amee.ma., Accessed November 18, 2018.
2.
Scenario 450 of WEO
,
2009
, http://www.iea.org/statistics/topics/CO2emissions/, Accessed November 15, 2018.
3.
Sick
,
F.
,
Schade
,
S.
,
Mourtada
,
A.
,
Uh
,
D.
, and
Grausam
,
M.
,
2014
, “
Dynamic Building Simulations for the Establishment of a Moroccan Thermal Regulation for Buildings
,”
J. Green Build.
,
9
(
1
), pp.
1
21
.
4.
Sobhy
,
I.
,
Brakez
,
A.
, and
Benhamou
,
B.
,
2016
, “
Thermal Comfort Analysis of a House Retrofitted According to the Moroccan Building Energy Code
,”
International Renewable and Sustainable Energy Conference (IRSEC)
,
Marrakech, Morocco
,
Nov. 14–17
, pp.
849
854
.
5.
Sobhy
,
I.
,
Brakez
,
A.
, and
Benhamou
,
B.
,
2017
, “
Analysis for Thermal Behavior and Energy Savings of a Semi-detached House With Different Insulation Strategies in Hot Semi-arid Climate
,”
J. Green Build.
,
12
(
1
), pp.
78
106
.
6.
Kolaitis
,
D. I.
,
Malliotakis
,
E.
,
Kontogeorgos
,
D. A.
,
Mandilaras
,
I.
,
Katsourinis
,
D. I.
, and
Founti
,
M. A.
,
2013
, “
Comparative Assessment of Internal and External Thermal Insulation Systems for Energy Efficient Retrofitting of Residential Buildings
,”
Energy Build.
,
64
, pp.
123
131
.
7.
Zhou
,
S.
, and
Zhao
,
J.
,
2013
, “
Optimum Combinations of Building Envelop Energy-Saving Technologies for Office Buildings in Different Climatic Regions of China
,”
Energy Build.
,
57
, pp.
103
109
.
8.
Dongmei
,
P.
,
Mingyin
,
C.
,
Shiming
,
D.
, and
Zhongping
,
L.
,
2012
, “
The Effects of External Wall Insulation Thickness It Annual Cooling and Heating Energy Uses Under Different Climates
,”
Appl. Energy
,
97
, pp.
313
318
.
9.
Melo
,
O. B. C.
,
Bueno da Silva
,
L.
,
Coutinho
,
A. S.
,
Sousa
,
V.
, and
Perazzo
,
N.
,
2012
, “
Energy Efficiency in Building the Facilities Using Thermal Insulating Materials in Northeast Brazil
,”
Energy Build.
,
47
, pp.
35
43
.
10.
Al-Homoud
,
S.
,
2005
, “
Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials
,”
Build. Environ.
,
40
(
3
), pp.
353
366
.
11.
Farhanieh
,
B.
, and
Sattari
,
S.
,
2006
, “
Simulation of Energy Saving in Iranian Buildings Using Integrative Modeling for Insulation
,”
Renewable Energy
,
31
(
4
), pp.
417
425
.
12.
Kossecka
,
E.
, and
Kosny
,
J.
,
2002
, “
Influence of Insulation Is Configuration Heating and Cooling Loads in a Continuously Used Building
,”
Energy Build.
,
34
(
4
), pp.
321
331
.
13.
Toguyeni
,
D. Y. K.
,
Coulibaly
,
O.
,
Ouedraogo
,
A.
,
Koulidiati
,
J.
,
Dutil
,
Y.
, and
Rousse
,
D.
,
2012
, “
Study of the Influence of Roof Insulation Involving Local Materials on Cooling Loads of Houses Built of Clay and Straw
,”
Energy Build.
,
50
, pp.
74
80
.
14.
Kumar
,
A.
, and
Suman
,
B. M.
,
2013
, “
Experimental Evaluation of Insulation Materials for Walls and Roofs and Their Impact on Indoor Thermal Comfort Under Composite Climate
,”
Build. Environ.
,
59
, pp.
635
643
.
15.
Dong
,
X.
,
Soebarto
,
V.
, and
Griffith
,
M.
,
2014
, “
Strategies for Reducing Heating and Cooling Loads of Uninsulated Rammed Earth Wall Houses
,”
Energy Build.
,
77
, pp.
323
331
.
16.
Friess
,
W. A.
,
Rakhshan
,
K.
,
Hendawi
,
T. A.
, and
Tajerzadeh
,
S.
,
2012
, “
Wall Insulation Measures for Residential Villas in Dubai: A Case Study in Energy Efficiency
,”
Energy Build.
,
44
, pp.
26
32
.
17.
Dlimi
,
M.
,
Iken
,
O.
,
Agounoun
,
R.
,
Zoubir
,
A.
,
Kadiri
,
I.
, and
Sbai
,
K.
,
2019
, “
Energy Performance and Thickness Optimization of Hemp Wool Insulation and Air Cavity Layers Integrated in Moroccan Building Walls’
,”
Sustainable Prod. Consum.
,
20
, pp.
273
288
.
18.
Byrne
,
A.
,
Byrne
,
G.
,
Davies
,
A.
, and
James Robinson
,
A.
,
2013
, “
Transient and Quasi-Steady Thermal Behaviour of a Building Envelope due to Retrofitted Cavity Wall and Ceiling Insulation
,”
Energy Build.
,
61
, pp.
356
365
.
19.
Mastouri
,
H.
,
Benhamou
,
B.
,
Hamdi
,
H.
, and
Mouyal
,
E.
,
2017
, “
Thermal Performance Assessment of Passive Techniques Integrated Into a Residential Building in Semi-Arid Climate
,”
Energy Build.
,
143
, pp.
1
16
.
20.
Van Hooff
,
T.
,
Blocken
,
B.
,
Hensen
,
J. L. M.
, and
Timmermans
,
H. J. P.
,
2015
, “
On the Predicted Effectiveness of Climate Adaptation Measures for Residential Buildings
,”
Build. Environ.
,
83
, pp.
142
158
.
21.
Drissi Lamrhari
,
E.
, and
Benhamou
,
B.
,
2018
, “
Thermal Behavior and Energy Saving Analysis of a Flat with Different Energy Efficiency Measures in six Climates
,”
Build. Simul.
,
11
(
6
), pp.
1123
1144
.
22.
Stéphan
,
E.
,
Cantin
,
R.
,
Caucheteux
,
A.
,
Tasca-Guernouti
,
S.
, and
Michel
,
P.
,
2014
, “
Experimental Assessment of Thermal Inertia in Insulated and non-Insulated old Limestone Buildings
,”
Build. Environ.
,
80
, pp.
241
248
.
23.
Kisilewicz
,
T.
, and
Dudzińska
,
A.
,
2015
, “
Summer Overheating of a Passive Sports Hall Building
,”
Arch. Civ. Mech. Eng.
,
15
(
4
), pp.
1193
1201
.
24.
Oliveira Panão
,
M. J. N.
,
Camelo
,
S. M. L.
, and
Gonçalves
,
H. J. P.
,
2011
, “
Assessment of the Portuguese Building Thermal Code: Newly Revised Requirements for Cooling Energy Needs Used to Prevent the Overheating of Buildings in the Summer
,”
Energy
,
36
(
5
), pp.
3262
3271
.
25.
Staszczuk
,
A.
,
Wojciech
,
M.
, and
Kuczyński
,
T.
,
2017
, “
The Effect of Floor Insulation on Indoor Air Temperature and Energy Consumption of Residential Buildings in Moderate Climates
,”
Energy
,
138
, pp.
139
146
.
26.
Ahmad
,
I.
,
Khetrish
,
E.
, and
Abughres
,
S. M.
,
1985
, “
Assessment of Ground Thermal Capacity for Space Cooling in Libya
,”
Energy
,
10
(
9
), pp.
993
998
.
27.
Sakami
,
N.
,
Boukhattem
,
L.
,
Hamdi
,
H.
, and
Benhamou
,
B.
,
2020
, “
Soil Thermal Inertia Effect on Shallow Basement Energy Performance in Different Morocco Climates
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041001
.
28.
Al-Saadi
,
S. N. J.
,
Al-Hajri
,
J.
, and
Sayari
,
M. A.
,
2017
, “
Energy-Efficient Retrofitting Strategies for Residential Buildings in Hot Climate of Oman
,”
Energy Procedia
,
142
, pp.
2009
2014
.
29.
Huanga
,
H.
,
Binti
,
W. I.
,
Nazib
,
W. M.
,
Yua
,
Y.
, and
Wang
,
Y.
,
2020
, “
Energy Performance of a High-Rise Residential Building Retrofitted to Passive Building Standard—A Case Study
,”
Appl. Therm. Eng.
,
181
, p.
115902
.
30.
Peel
,
M. C.
,
Finlayson
,
B. L.
, and
Mcmahon
,
T. A.
,
2007
, “
Updated World Map of the Köppen-Geiger Climate Classification
,”
Hydrol. Earth Syst. Sci. Discuss.
,
4
(
2
), pp.
439
473
.
31.
Moroccan Thermal Regulation for Construction, RTCM
, pp.
4256
4269
, http://www.amee.ma/images/Text_Pic/Others/Reglement_thermique_de_construction_au_Maroc.pdf, Accessed February 21, 2016.
32.
Ministry of the Habitat and the Urban Policy
, http://www.mhpv.gov.ma/Pages/default.aspx, Accessed February 1, 2016.
33.
Klein
,
S. A.
,
Beckman
,
W. A.
,
Mitchell
,
J. W.
,
Duffie
,
J. A.
,
Duffie
,
N. A.
,
Freeman
,
T. L.
,
Mitchell
,
J. C.
,
Braun
,
J. E.
,
Evans
,
B. L.
,
Kummer
,
J. P.
, and
Urban
,
R. E.
,
2000
,
A Transient System Simulation Program
,
Solar Energy Laboratory, University of Wisconsin-Madison
,
WI, USA
.
34.
ISO 7730: moderate thermal environments—Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort, 1995
.
35.
METEONORM, 2014, V7.0.22.8
, http://www.meteonorm.com
36.
ASHRAE Standard 62.2-2019, Ventilation and Acceptable Indoor Air Quality in Residential Building
, http://www.ashrae.org, Accessed December 10, 2019.
37.
Moroccan Agency for Energy Efficiency, AMEE, Morocco. Technical Guide for Heating, Ventilation and Air Conditioning
, https://www.amee.ma/sites/default/files/inlinefiles/guide%20chaffage%20ventilation%20et%20cilmatisation.pdf, Accessed December 10, 2019.
38.
Sobhy
,
I.
,
Brakez
,
A.
, and
Benhamou
,
B.
,
2014
, “
Effect of Thermal Insulation and Ground Coupling on Thermal Load of a Modern House in Marrakech
,”
International Renewable and Sustainable Energy Conference (IRSEC)
,
Ouarzazate, Morocco
, pp.
425
430
.
39.
Jacovides
,
C. P.
,
Santamouris
,
M.
,
Mihalakakou
,
G.
, and
Lewis
,
J. O.
,
1996
, “
On the Ground Temperature Applications Profile for Passive Cooling in Buildings
,”
Sol. Energy
,
57
(
3
), pp.
167
175
.
40.
Selection Guidance for Low Energy Cooling Technologies
,
1997
, International Energy Agency, Energy Conservation in Buildings and Community Systems Program, Annex 28 Low Energy Cooling, Subtask 2 Postponement 1. IEA Annex 28, London, UK.
41.
Stazi
,
F.
,
Vegliò
,
A.
,
Di Perna
,
C.
, and
Munafò
,
P.
,
2013
, “
Experimental Comparison Between 3 Different Traditional Wall Constructions and Dynamic Simulations to Identify Optimal Thermal Insulation Strategies
,”
Energy Build.
,
60
, pp.
429
441
.
42.
Al-Sallal
,
K. A.
,
1998
, “
Sizing Windows to Achieve Passive Cooling, Passive Heating, and Daylighting in Hot Arid Regions
,”
Renewable Energy
,
14
(
1–4
), pp.
365
371
.
43.
Gan
,
G.
,
1998
, “
A Parametric Study of Trombe Walls for Passive Cooling of Buildings
,”
Energy Build.
,
27
(
1
), pp.
37
43
.
44.
Bekkouche
,
S. M. A.
,
Benouaz
,
T.
,
Yaiche
,
M. R.
,
Cherier
,
M. K.
,
Hamdani
,
M.
, and
Chellali
,
F.
,
2011
, “
Introduction to Control of Solar Gain and Internal Temperatures by Thermal Insulation, Proper Orientation and Eaves
,”
Energy Build.
,
43
(
9
), pp.
2414
2421
.
45.
Benhamou
,
B.
, and
Bennouna
,
A.
,
2013
, “
Energy Performance of a Passive Building in Marrakech: Parametric Study
,”
Energy Procedia
,
42
, pp.
624
632
.
46.
Fanger
,
P. O.
,
1972
,
Thermal Comfort, Analysis and Application in Environment Engineering
,
McGraw Hill
,
New York
.
47.
National Office for Electricity and Drinking Water (ONEE), Morocco, http://www.onee.org.ma, Accessed November 22, 2019.
48.
Ministry of Energy, Mines, Water and Environment, Department of Energy and Mines, Chiffres du secteur de l’energie
(
2013
), http://www.mem.gov.ma/SiteAssets/PdfChCle1/energie/annuel/CHIFCLESSECENER2012-DP-1-11-13.pdf, Accessed October 30, 2019.
You do not currently have access to this content.