Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A comfortable indoor working circumstance can be accomplished by a ventilation and air conditioning system. There are several factors influencing the quality of indoor air, with the insufficiency of ventilation accounting for over 50% of the overall considerations. While traditional air conditioner is able to fulfill the needs of ventilation and indoor temperature control, low-efficiency and high energy consumption no longer align with the current sustainable and energy-efficiency goals. Thus, the development of energy-saving and high-efficiency air conditioning systems is crucial for realizing green and efficient building practices. Evaporative cooling technology, specifically dew-point evaporative cooling, has garnered extensive attention as an efficient cooling method and a candidate for environmentally friendly and high-performance alternatives to traditional air conditioning systems. This article investigates the thermodynamic losses involved in a dew-point evaporative cooling system using the counter-flow design. Detailed mathematical models for the evaporative cooler along with the entropy generation in the channels are developed. The model facilitates calculations of (1) the entropy generation distribution in different layers within the system and (2) the entropy generation of each layer and the whole system under various input conditions. Approaching the system from the second law of thermodynamics perspective, this model serves as a guide for selecting the optimal operating conditions, thus promoting the widespread application and commercialization of dew-point evaporative cooling systems with the counter-flow structure.

References

1.
Su
,
X.
,
Yuan
,
Y.
,
Wang
,
Z.
,
Liu
,
W.
,
Lan
,
L.
, and
Lian
,
Z.
,
2023
, “
Human Thermal Comfort in Non-Uniform Thermal Environments: A Review
,”
Energy Built Environ.
,
5
(
6
), pp.
853
862
.
2.
Arowoiya
,
V. A.
,
Moehler
,
R. C.
, and
Fang
,
Y.
,
2023
, “
Digital Twin Technology for Thermal Comfort and Energy Efficiency in Buildings: A State-of-the-Art and Future Directions
,”
Energy Built Environ.
,
5
(
5
), pp.
641
656.
3.
Wu
,
Y.
,
Zhao
,
J.
, and
Cao
,
B.
,
2023
, “
A Systematic Review of Research on Personal Thermal Comfort Using Infrared Technology
,”
Energy Build.
,
301
, p.
113666
.
4.
Klepeis
,
N. E.
,
Nelson
,
W. C.
,
Ott
,
W. R.
,
Robinson
,
J. P.
,
Tsang
,
A. M.
,
Switzer
,
P.
,
Behar
,
J. V.
,
Hern
,
S. C.
, and
Engelmann
,
W. H.
,
2001
, “
The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants
,”
J. Exposure Sci. Environ. Epidemiol.
,
11
(
3
), pp.
231
252
.
5.
Lind
,
M.
,
Holøs
,
S.
,
Thunshelle
,
K.
,
Yang
,
A.
, and
Mysen
,
M.
,
2019
, “
How Does Low Relative Humidity Affect Perceived Air Quality, Thermal Comfort and Symptoms in Modern Office Buildings in Cold Climates?
,” Cold Climate HVAC 2018. CCC 2018. Proceedings in Energy,
D.
Johansson
,
H.
Bagge
, and
Å
Wahlström
., eds., Springer, Cham, pp.
899
909
.
6.
Sekatia
,
A.
,
Setyowati
,
E.
, and
Hardiman
,
G.
,
2020
, “
On the Comparison of Thermal Comfort Performances in Dutch Style Churches With Low Ventilation in Hot-Humid Tropical Region
,”
Civ. Eng. Archit.
,
8
(
6
), pp.
1419
1435
.
7.
Savanti
,
F.
,
Setyowati
,
E.
, and
Hardiman
,
G.
,
2022
, “
The Impact of Ventilation on Indoor Air Quality and Air Change Rate
,”
Evergreen
,
9
(
1
), pp.
219
225
.
8.
Zhao
,
Y.
,
Sun
,
H.
, and
Tu
,
D.
,
2018
, “
Effect of Mechanical Ventilation and Natural Ventilation on Indoor Climates in Urumqi Residential Buildings
,”
Build. Environ.
,
144
, pp.
108
118
.
9.
Hori
,
S.
,
2012
, “
Implications of Energy Efficiency and Economic Growth in Developing Countries
,”
J. Nov. Carbon Resour. Sci.
,
6
, pp.
9
14
. https://ndlsearch.ndl.go.jp/books/R000000004-I024024875
10.
Kibria
,
M. T.
,
Islam
,
M. A.
,
Saha
,
B. B.
,
Nakagawa
,
T.
, and
Mizuno
,
S.
,
2019
, “
Assessment of Environmental Impact for Air-Conditioning Systems in Japan Using HFC Based Refrigerants
,”
Evergreen
,
6
(
3
), pp.
246
253
.
11.
Zhao
,
K.
,
Liu
,
X. H.
,
Zhang
,
T.
, and
Jiang
,
Y.
,
2011
, “
Performance of Temperature and Humidity Independent Control Air-Conditioning System in an Office Building
,”
Energy Build.
,
43
(
8
), pp.
1895
1903
.
12.
T. Center,
2016
, Annual Report on China Building Energy Efficiency, Tsinghua Building Energy Research Center, Beijing, China.
13.
IEA
,
2023
, “World Energy Outlook,” IEA, Paris, https://www.iea.org/reports/world-energy-outlook-2023
14.
IEA
,
2023
, “
Keeping Cool in a Hotter World Is Using More Energy, Making Efficiency More Important Than Ever
,” IEA, Paris, https://www.iea.org/commentaries/keeping-cool-in-a-hotter-world-is-using-more-energy-making-efficiency-more-important-than-ever
15.
Shen
,
Y.
, and
Yang
,
H.
,
2023
, “
Multi-Objective Optimization of a CO2/H2O Capture-Based Ventilation and Air Conditioning System
,”
Appl. Energy
,
344
, p.
121305
.
16.
Zhao
,
M.
,
Künzel
,
H. M.
, and
Antretter
,
F.
,
2015
, “
Parameters Influencing the Energy Performance of Residential Buildings in Different Chinese Climate Zones
,”
Energy Build.
,
96
, pp.
64
75
.
17.
Chenari
,
B.
,
Dias Carrilho
,
J.
, and
Gameiro Da Silva
,
M.
,
2016
, “
Towards Sustainable, Energy-Efficient and Healthy Ventilation Strategies in Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
1426
1447
.
18.
Levine
,
M.
,
Ürge-Vorsatz
,
D.
,
Blok
,
K.
,
Geng
,
L.
,
Harvey
,
D.
,
Lang
,
S.
,
Levermore
,
G.
,
Mongameli Mehlwana
,
A.
,
Mirasgedis
,
S.
, and
Novikova
,
A.
, et al.,
2007
, “Residential and Commercial Buildings,”
Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
B.
Metz
,
O. R.
Davidson
,
P. R.
Bosch
,
R.
Dave
, and
L. A.
Meyer
, eds., Cambridge, UK.
19.
Singh
,
D.
, and
Singh
,
A.
,
2023
, “
Role of Building Automation Technology in Creating a Smart and Sustainable Built Environment
,”
Evergreen
,
10
(
1
), pp.
412
420
.
20.
Gupta
,
V.
, and
Deb
,
C.
,
2023
, “
Envelope Design for Low-Energy Buildings in the Tropics: A Review
,”
Renewable Sustainable Energy Rev.
,
186
, p.
113650
.
21.
Chiu
,
F.
, and
Krarti
,
M.
,
2021
, “
Impacts of Air-Conditioning Equipment Sizing on Energy Performance of US Office Buildings
,”
ASME J. Eng. Sustain. Build. Cities
,
2
(
2
), p.
021001
.
22.
Al-Azba
,
M.
, and
Mahgoub
,
M.
,
2023
, “
Parametric Analysis and Multi-Objective Optimization for Energy-Efficient and High-Performance HVAC Air Filter Design and Selection
,”
ASME J. Eng. Sustain. Build. Cities
,
4
(
3
), p.
031003
.
23.
Hawks
,
M. A.
, and
Cho
,
S.
,
2024
, “
Review and Analysis of Current Solutions and Trends for Zero Energy Building (ZEB) Thermal Systems
,”
Renewable Sustainabele Energy Rev.
,
189
, p.
114028
.
24.
Aflaki
,
A.
,
Mahyuddin
,
N.
,
Al-Cheikh Mahmoud
,
Z.
, and
Baharum
,
M. R.
,
2015
, “
A Review on Natural Ventilation Applications Through Building Façade Components and Ventilation Openings in Tropical Climates
,”
Energy Build.
,
101
, pp.
153
162
.
25.
Tanadecha
,
P.
, and
Khaothong
,
K.
,
2023
, “
Thermoeconomic Analysis of Duct Works for Air-Conditioned Building in Thailand
,”
Energy Built Environ.
26.
Kalsia
,
M.
,
Sharma
,
A.
,
Kaushik
,
R.
, and
Dondapati
,
R. S.
,
2023
, “
Evaporative Cooling Technologies: Conceptual Review Study
,”
Evergreen
,
10
(
1
), pp.
421
429
.
27.
Anisimov
,
S.
, and
Pandelidis
,
D.
,
2014
, “
Numerical Study of the Maisotsenko Cycle Heat and Mass Exchanger
,”
Int. J. Heat Mass Transfer
,
75
, pp.
75
96
.
28.
Anisimov
,
S.
,
Pandelidis
,
D.
, and
Danielewicz
,
J.
,
2014
, “
Numerical Analysis of Selected Evaporative Exchangers With the Maisotsenko Cycle
,”
Energy Convers. Manag.
,
88
, pp.
426
441
.
29.
Anisimov
,
S.
,
Pandelidis
,
D.
,
Jedlikowski
,
A.
, and
Polushkin
,
V.
,
2014
, “
Performance Investigation of a M (Maisotsenko)-Cycle Cross-Flow Heat Exchanger Used for Indirect Evaporative Cooling
,”
Energy
,
76
, pp.
593
606
.
30.
Pandelidis
,
D.
,
Anisimov
,
S.
, and
Worek
,
W. M.
,
2015
, “
Comparison Study of the Counter-Flow Regenerative Evaporative Heat Exchangers With Numerical Methods
,”
Appl. Therm. Eng.
,
84
, pp.
211
224
.
31.
Hasan
,
A.
,
2010
, “
Indirect Evaporative Cooling of Air to a Sub-Wet Bulb Temperature
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2460
2468
.
32.
Hasan
,
A.
,
2012
, “
Going Below the Wet-Bulb Temperature by Indirect Evaporative Cooling: Analysis Using a Modified ε-NTU Method
,”
Appl. Energy
,
89
(
1
), pp.
237
245
.
33.
Lin
,
J.
,
Thu
,
K.
,
Bui
,
T. D.
,
Wang
,
R. Z.
,
Ng
,
K. C.
, and
Chua
,
K. J.
,
2016
, “
Study on Dew Point Evaporative Cooling System With Counter-Flow Configuration
,”
Energy Convers. Manag.
,
109
, pp.
153
165
.
34.
Zhan
,
C.
,
Zhao
,
X.
,
Smith
,
S.
, and
Riffat
,
S. B.
,
2011
, “
Numerical Study of a M-Cycle Cross-Flow Heat Exchanger for Indirect Evaporative Cooling
,”
Build. Environ.
,
46
(
3
), pp.
657
668
.
35.
Gupta
,
S. K.
,
Arora
,
B. B.
, and
Arora
,
A.
,
2024
, “
Thermodynamic Performance Enhancement of an Air Conditioner With Dew Point Evaporative Cooler
,”
ASME J. Eng. Sustain. Build. Cities
,
5
(
3
), p.
014501
.
36.
Riangvilaikul
,
B.
, and
Kumar
,
S.
,
2010
, “
Numerical Study of a Novel Dew Point Evaporative Cooling System
,”
Energy Build.
,
42
(
11
), pp.
2241
2250
.
37.
Riangvilaikul
,
B.
, and
Kumar
,
S.
,
2010
, “
An Experimental Study of a Novel Dew Point Evaporative Cooling System
,”
Energy Build.
,
42
(
5
), pp.
637
644
.
38.
Lee
,
J.
, and
Lee
,
D. Y.
,
2013
, “
Experimental Study of a Counter Flow Regenerative Evaporative Cooler With Finned Channels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
173
179
.
39.
Bruno
,
F.
,
2011
, “
On-Site Experimental Testing of a Novel Dew Point Evaporative Cooler
,”
Energy Build.
,
43
(
12
), pp.
3475
3483
.
40.
Al-Azez Mahdi
,
L. A.
,
Fayad
,
M. A.
, and
Chaichan
,
M. T.
,
2023
, “
Analysis of Entropy Generation for Horizontal Heated Cylinder by Natural Convection and Radiation
,”
Evergreen
,
10
(
2
), pp.
888
896
.
41.
Sachdeva
,
G.
,
Sharma
,
B.
,
Anuradha
,
P.
, and
Verma
,
S.
,
2023
, “
Irreversibility Analysis of an Ejector Refrigeration Cycle by Modified Gouy-Stodola Formulation
,”
Evergreen
,
10
(
1
), pp.
252
271
.
42.
Kumar
,
R.
,
Verma
,
S. K.
,
Gupta
,
N. K.
, and
Singh
,
S. K.
,
2022
, “
Performance Enhancement of TSAH Using Graphene and Graphene/CeO2-Black Paint Coating on Absorber: A Comparative Study
,”
Evergreen
,
9
(
3
), pp.
673
681
.
43.
Wang
,
L.
,
Zhan
,
C.
,
Zhang
,
J.
, and
Zhao
,
X.
,
2019
, “
Optimization of the Counter-Flow Heat and Mass Exchanger for M-Cycle Indirect Evaporative Cooling Assisted With Entropy Analysis
,”
Energy
,
171
, pp.
1206
1216
.
44.
Aziz
,
M. A.
,
Lin
,
J.
,
Mikšík
,
F.
,
Miyazaki
,
T.
, and
Thu
,
K.
,
2022
, “
The Second Law Analysis of a Humidification-Dehumidification Desalination System Using M-Cycle
,”
Sustain. Energy Technol. Assess.
,
52
, p.
102141
.
45.
Jradi
,
M.
, and
Riffat
,
S.
,
2014
, “
Experimental and Numerical Investigation of a Dew-Point Cooling System for Thermal Comfort in Buildings
,”
Appl. Energy
,
132
, pp.
524
535
.
46.
Miyazaki
,
T.
,
Nikai
,
I.
, and
Akisawa
,
A.
,
2011
, “
Simulation Analysis of an Open-Cycle Adsorption Air Conditioning System-Numeral Modeling of a Fixed Bed Dehumidification Unit and the Maisotsenko Cycle Cooling Unit
,”
Int. J. Energy Clean Environ.
,
12
(
2–4
), pp.
341
354
.
47.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
48.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
Wiley
,
New York
.
49.
Sciacovelli
,
A.
,
Verda
,
V.
, and
Sciubba
,
E.
,
2015
, “
Entropy Generation Analysis as a Design Tool—A Review
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
1167
1181
.
You do not currently have access to this content.