Abstract

This study explores the urgent need for an embodied carbon (EC) assessment framework within Qatar's construction sector, driven by the country's rapid development and high carbon intensity in construction materials, such as cement and steel. Employing a systematic literature review through the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and Visualization of Similarities (VOS) viewer for bibliometric analysis, this study identifies major gaps in Qatar-specific EC data and regulation. It highlights global best practices, particularly those from countries with mandated EC regulations, and discusses their potential adaptation to Qatar's unique environmental and economic context. This study advocates the establishment of a comprehensive EC database to inform construction practices aligned with Qatar's sustainability goals under its National Vision 2030. The findings suggest that a regionally adapted EC framework would significantly aid Qatar in reducing greenhouse gas emissions, given the country's heavy reliance on energy-intensive materials and its extreme climate. The study concludes with recommendations for the policy integration of EC assessments in Qatar's building sector, aiming to support sustainable urban development and climate resilience in the face of intensifying environmental challenges.

References

1.
United Nations Environment Program (UNEP)
,
2023
,
2023 Global Status Report for Buildings and Construction
,
United Nations Environment Programme
.
2.
Röck
,
M.
,
Saade
,
M. R. M.
,
Balouktsi
,
M.
,
Rasmussen
,
F. N.
,
Birgisdottir
,
H.
,
Frischknecht
,
R.
,
Habert
,
G.
,
Lützkendorf
,
T.
, and
Passer
,
A.
,
2020
, “
Embodied GHG Emissions of Buildings–The Hidden Challenge for Effective Climate Change Mitigation
,”
Appl. Energy
,
258
(
1
), p.
114107
.
3.
Architecture 2030
,
2023
, “Why the Building Sector?” https://architecture2030.org/why-the-building-sector/, Accessed October 28, 2024
4.
World Green Building Council
,
2018
,
COP24: Time to Address the Building and Construction Sector's Total Emissions Impact
,
World Green Building Council
,
London, England
.
5.
Lützkendorf
,
T.
, and
Balouktsi
,
M.
,
2022
, “
Embodied Carbon Emissions in Buildings: Explanations, Interpretations, Recommendations
,”
Buildings Cities
,
3
(
1
), pp.
964
973
.
6.
IPCC
,
2023
,
Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, UK
.
7.
Mohammad
,
B.
,
Remøy
,
H.
,
Gruis
,
V.
, and
Jylhä
,
T.
,
2023
, “
Circular Building Adaptability in Adaptive Reuse: Multiple Case Studies in the Netherlands
,”
J. Eng., Des. Technol.
,
23
(
1
), pp.
161
183
.
8.
World Bank
,
2023
,
World Development Indicators 2023
,
The World Bank Group
,
Washington, DC
.
9.
Friedlingstein
,
P.
,
O'Sullivan
,
M.
,
Jones
,
M. W.
,
Andrew
,
R. M.
,
Bakker
,
D. C. E.
,
Hauck
,
J.
,
Landschützer
,
P.
, et al
,
2023
, “
Global Carbon Budget 2023
,”
Earth Syst. Sci. Data
,
15
(
12
), pp.
5301
5369
.
10.
Crawford
,
R. H.
,
2022
, “
Greenhouse Gas Emissions of Global Construction Industries
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1218
(
1
), p.
012047
.
11.
Biswas
,
W. K.
,
Alhorr
,
Y.
,
Lawania
,
K. K.
,
Sarker
,
P. K.
, and
Elsarrag
,
E.
,
2017
, “
Life Cycle Assessment for Environmental Product Declaration of Concrete in the Gulf States
,”
Sustainable Cities Soc.
,
35
(
1
), pp.
36
46
.
12.
Barcelo
,
L.
,
Kline
,
J.
,
Walenta
,
G.
, and
Gartner
,
E.
,
2014
, “
Cement and Carbon Emissions
,”
Mater. Struct.
,
47
(
6
), pp.
1055
1065
.
13.
Bishnoi
,
S.
,
2017
,
Carbon Emissions and Their Mitigation in the Cement Sector
,
Springer, Singapore
,
Singapore
, pp.
257
268
.
14.
Abu Saleh
,
M.
,
2014
, “
Development of Sustainable and low Carbon Concretes for the Gulf Environment
,”
Doctoral dissertation
,
University of Bath
.
15.
Zhang
,
X.
, and
Jing
,
S.
,
2015
, “
The Prediction of Cement Energy Demand Based on Support Vector Machine
,”
Fourth International Conference on Computer, Mechatronics, Control and Electronic Engineering
,
Hangzhou, China
,
Sept. 28–29
, Atlantis Press, pp.
1155
1160
.
16.
Fadli
,
F.
,
Dacanay
,
T.
,
Moen
,
C.
,
Guest
,
J.
, and
Bahrami
,
P.
,
2016
, “
Life Cycle Assessment of Tall Buildings in Qatar: A Focus on Construction Materials Use and Techniques
,”
Engineering Leaders Conference 2016
,
Doha, Qatar
,
Mar. 22–23
.
17.
El Raey
,
M.
,
2010
,
Impact of Sea Level Rise on the Arab Region
,
University of Alexandria
,
University of Alexandria, Egypt
.
18.
Darwish
,
M. A.
,
Abdulrahim
,
H.
,
Mohammed
,
S.
, and
Mohtar
,
R.
,
2016
, “
The Role of Energy to Solve Water Scarcity in Qatar
,”
Desalin. Water Treat.
,
57
(
40
), pp.
18639
18667
.
19.
State of Qatar Ministry of Municipality and Environment
,
2021
,
Nationally Determined Contribution (NDC).
.
20.
Atour
,
R.
, and
Fadli
,
F.
,
2023
, “
The Challenges and Future Aspirations of Implementing Global Sustainability Assessment System (GSAS) in the Urban Facilities of Mega Sport Events [MSEs] in Qatar
,”
The International Conference on Civil Infrastructure and Construction
,
Qatar
,
Feb. 5–8
, pp.
1104
1112
.
21.
Al-Nuaimi
,
S.
,
Banawi
,
A.
, and
Al-Ghamdi
,
S.
,
2019
, “
Environmental and Economic Life Cycle Analysis of Primary Construction Materials Sourcing Under Geopolitical Uncertainties: A Case Study of Qatar
,”
Sustainability
,
11
(
21
), p.
6000
22.
Saleh
,
R.
, and
Al-Swidi
,
A.
,
2019
, “
The Adoption of Green Building Practices in Construction Projects in Qatar: A Preliminary Study
,”
Manage. Environ. Qual.: Int. J.
,
30
(
6
), pp.
1238
1255
23.
Lützkendorf
,
T.
, and
Balouktsi
,
M.
,
2022
, “
Embodied Carbon Emissions in Buildings: Explanations, Interpretations, Recommendations
,”
Build. Cities
,
3
(
1
), pp.
964
973
.
24.
González
,
M. J.
, and
García Navarro
,
J.
,
2006
, “
Assessment of the Decrease of CO2 Emissions in the Construction Field Through the Selection of Materials: Practical Case Study of Three Houses of Low Environmental Impact
,”
Build. Environ.
,
41
(
7
), pp.
902
909
.
25.
Mcallister
,
J. T.
,
Lennertz
,
L.
, and
Atencio Mojica
,
Z.
,
2022
, “
Mapping A Discipline: A Guide to Using VOSviewer for Bibliometric and Visual Analysis
,”
Sci. Technol. Lib.
41
(
3
), pp.
319
348
.
26.
Madani
,
F.
, and
Weber
,
C.
,
2016
, “
The Evolution of Patent Mining: Applying Bibliometrics Analysis and Keyword Network Analysis
,”
World Pat. Inf.
,
46
(
1
), pp.
32
48
.
27.
Cheng
,
Q.
,
Wang
,
J.
,
Lu
,
W.
,
Huang
,
Y.
, and
Bu
,
Y.
,
2020
, “
Keyword-Citation-Keyword Network: A New Perspective of Discipline Knowledge Structure Analysis
,”
Scientometrics
,
124
(
3
), pp.
1923
1943
.
28.
Spanos
,
I.
,
Kucukvar
,
M.
,
Bell
,
T. C.
,
Elnimah
,
A.
,
Hamdan
,
H.
,
Al Meer
,
B.
,
Prakash
,
S.
,
Lundberg
,
O.
,
Kutty
,
A. A.
, and
AlKhereibi
,
A. H. A.
,
2021
, “
How FIFA World Cup 2022 Meets the Carbon-Neutral Commitments and the United Nations 2030 Agenda for Sustainable Development: Reflections From the Tree Nursery Project in Qatar
,”
Sustainable Dev.
,
30
(
1
), pp.
203
226
.
29.
Alsabri
,
A.
, and
Al-Ghamdi
,
S. G.
,
2020
, “
Carbon Footprint and Embodied Energy of PVC, PE, and PP Piping: Perspective on Environmental Performance
,”
Energy Rep.
,
6
(
1
), pp.
364
370
.
30.
Al-Naemi
,
B. N.
,
2024
, “
A Methodology to Assess Environmental Sustainability of Educational Buildings in Qatar with a Case Study
,”
Master of Science thesis
,
Qatar University
.
31.
Al-Asmakh
,
M.
, and
Al-Awainati
,
N.
,
2018
, “
Counting the Carbon: Assessing Qatar's Carbon Dioxide Emissions
,”
Qatar Foundation Annual Research Conference Proceedings
,
Doha, Qatar
,
Mar. 19–20
.
32.
Al-Saeed
,
Y.
, and
Ahmed
,
A.
,
2018
, “
Evaluating Design Strategies for Near-Zero Energy Buildings in the Middle East and North Africa Regions
,”
Design
,
2
(
4
), p.
35
.
33.
Charfeddine
,
L.
,
Yousef Al-Malk
,
A.
, and
Al Korbi
,
K.
,
2018
, “
Is It Possible to Improve Environmental Quality Without Reducing Economic Growth? Evidence From the Qatar Economy
,”
Renewable Sustainable Energy Rev.
,
82
(
1
), pp.
25
39
.
34.
Khogali
,
H. A. M.
,
2016
, “
Comparison of Four Global Sustainable Building Rating Systems Carried out With Focus on Hot and Dry Climate
,”
J. Sustainable Dev.
,
9
(
2
), p.
1
.
35.
Andric
,
I.
, and
Al-Ghamdi
,
S. G.
,
2020
, “
Climate Change Implications for Environmental Performance of Residential Building Energy Use: The Case of Qatar
,”
Energy Rep.
,
6
(
1
), pp.
587
592
.
36.
Al-Omari
,
O.
,
Alkhdor
,
A.
,
Al-Rawashdeh
,
M. A.
,
Al-Ruwaishedi
,
M. R.
, and
Al-Rawashdeh
,
S. B.
,
2023
, “
Evaluating Carbon Footprint in the Life Cycle Design of Residential Concrete Structures in Jordan
,”
Civil Eng. J.
,
9
(
7
), pp.
1646
1659
.
37.
Asif
,
M.
,
Dehwah
,
A.
,
Ashraf
,
F.
,
Khan
,
H.
,
Shaukat
,
M.
, and
Hassan
,
M.
,
2017
, “
Life Cycle Assessment of a Three-Bedroom House in Saudi Arabia
,”
Environment
,
4
(
3
), p.
52
.
38.
De Wolf
,
C.
,
Cerezo
,
C.
,
Murtadhawi
,
Z.
,
Hajiah
,
A.
,
Al Mumin
,
A.
,
Ochsendorf
,
J.
, and
Reinhart
,
C.
,
2017
, “
Life Cycle Building Impact of a Middle Eastern Residential Neighborhood
,”
Energy
,
134
(
1
), pp.
336
348
.
39.
Tarabieh
,
A.
, and
Khorshed
,
A.
,
2019
, “
Optimised Evaluation Methods for the Embodied Energy and Carbon Management of Existing Buildings in Egypt
,”
Building
,
9
(
4
), p.
90
.
40.
Pakdel
,
A.
,
Ayatollahi
,
H.
, and
Sattary
,
S.
,
2021
, “
Embodied Energy and CO2 Emissions of Life Cycle Assessment (LCA) in the Traditional and Contemporary Iranian Construction Systems
,”
J. Build. Eng.
,
39
(
2
), p.
102310
.
41.
Hamida
,
A.
,
Alsudairi
,
A.
,
Alshaibani
,
K.
, and
Alshamrani
,
O.
,
2021
, “
Parametric Study of the Impact of Building Envelope Systems on Embodied and Operational Carbon of Residential Buildings
,”
Int. J. Build. Pathol. Adapt.
,
40
(
5
), pp.
753
774
.
42.
Planning and Statistics Authority
,
2023
,
Qatar Development Report
,
Planning and Statistics Authority
,
Doha
.
43.
Raey
,
M. E.
,
2010
, “
Impact of Sea Level Rise on the Arab Region
,”
thesis
,
University of Alexandria, Arab Academy of Science, Technology, and Maritime
.
44.
Hereher
,
M. E.
,
2020
, “
Assessment of Climate Change Impacts on Sea Surface Temperatures and Sea Level Rise—The Arabian Gulf
,”
Climate
,
8
(
4
), p.
50
.
45.
Al-Yaeeshi
,
A. A.
,
Al-Ansari
,
T.
, and
Govindan
,
R.
,
2018
, “
The Potential for Carbon Dioxide Capture and Utilization Within the State of Qatar
,”
28th European Symposium on Computer-Aided Process Engineering
,
Graz, Austria
,
June 10–13
, pp.
1499
1504
.
46.
Harmon
,
A. R.
, and
Truby
,
J.
,
2021
,
Comparative Climate Change Litigation: Beyond the Usual Suspects
,
Springer Nature Switzerland
,
Cham, Switzerland
, pp.
337
345
.
47.
Khan
,
S. A.
,
Al Rashid
,
A.
, and
Koç
,
M.
,
2023
, “
Adaptive Response for Climate Change Challenges for Small and Vulnerable Coastal Area (SVCA) Countries: Qatar Perspective
,”
Int. J. Disaster Risk Reduct.
,
96
(
4
), p.
103969
.
48.
Al-Noaimi
,
F.
,
Al-Ansari
,
T.
, and
Bicer
,
Y.
,
2023
, “
Towards a Long-Term Low Emission Development Strategy: The Case of Energy Transition in Qatar
,”
Global Challenges
,
7
(
6
), p.
2200229
.
49.
Al-Mannai
,
A. A. A. M.
,
2021
, “
Assessment of Inundation Risk From Sea Level Rise and Critical Area for Barrier Construction: A GIS-Based Framework and Application on the Eastern Coastal Areas of Qatar
,”
Doctor of Philosophy thesis
,
University of East Anglia
,
Norwich
.
50.
BREEAM
,
2019
,
Sustainable Design and Construction
,
Building Research Establishment (BRE)
,
London
.
51.
USGBC
,
2020
,
LEED v4.1 Building Design and Construction Guide
,
U.S. Green Building Council
,
Washington, DC.
52.
European Commission
,
2020
,
Level(s)—A Common EU Framework of Core Sustainability Indicators for Office and Residential Buildings: Part 3—How to Assess and Report on Carbon Impacts
,
Publications Office of the European Union
,
Luxembourg
.
53.
Green Building Council of Australia
,
2020
,
Pathways to Net Zero Buildings in Australia
,
Green Building Council of Australia
,
Sydney
.
54.
New Zealand Green Building Council
,
2020
,
Building for Climate Change: A Guide to Reducing Carbon Emissions in New Zealand Buildings
,
New Zealand Green Building Council
,
Auckland
.
55.
Van Oorschot
,
J.
,
Sprecher
,
B.
,
Rijken
,
P.
,
Witteveen
,
M.
,
Blok
,
M.
,
Schouten
,
N.
, and
van der Voet
,
E.
,
2023
, “
Towards a Low-Carbon and Circular Building Sector: Building Strategies and Urbanisation Pathways for the Netherlands
,”
J. Ind. Ecol.
,
27
(
2
), pp.
535
547
.
56.
Rijksoverheid
, and
Bouwbesluit Online
,
2012
, https://rijksoverheid.bouwbesluit.com/.
57.
Von Malmborg
,
F.
,
Rohdin
,
P.
, and
Wihlborg
,
E.
,
2024
, “
Climate Declarations for Buildings as a New Policy Instrument in Sweden: A Multiple Stream Perspective
,”
Build. Res. Inf.
,
52
(
4
), pp.
479
496
.
58.
Karlsson
,
I.
,
Rootzén
,
J.
, and
Johnsson
,
F.
,
2020
, “
Reaching Net-Zero Carbon Emissions in Construction Supply Chains—Analysis of a Swedish Road Construction Project
,”
Renewable Sustainable Energy Rev.
,
120
(
2
), p.
109651
.
You do not currently have access to this content.