Abstract

An understanding of the limiting stress level for crack initiation and propagation in a fuel cladding material is a fundamental requirement for the development of water reactor clad materials. Conventional tests, in use to evaluate fracture properties, are of limited help, because they are adapted from ASTM standards designed for thick materials, which differ significantly from fuel cladding geometry (small diameter thin-walled tubing). The Internal Conical Mandrel (1CM) test described here is designed to simulate the effect of fuel pellet diametrical increase on a cladding with an existing axial throughwall crack. It consists in forcing a cone, having a tapered increase in diameter, inside the Zircaloy cladding with an initial axial crack. The aim of this work is to quantify the crack initiation and propagation criteria for fuel cladding material. The crack propagation is monitored by a video system for obtaining crack extension δa. A finite-element (FE) simulation of the ICM test is performed in order to derive J integrals. A node release technique is applied during the FE simulation for crack propagation and the J-resistance curves (Ja) are generated. This paper presents the test methodology, the J computation validation, and results for cold-worked stress relieved Zircaloy-4 cladding at 20° and 300°C and also for Al 7050-T7651 aluminum alloy tubing at 20°C.

References

1.
Grigoriev
,
V.
,
Josefsson
,
B.
, and
Rosborg
,
B.
, “
Fracture Toughness of Zircaloy Cladding Tubes
,” in
Zirconium in the Nuclear Industry: Eleventh International Symposium
, ASTM STP 1295,
Bradley
E. R.
and
Sabol
G. P.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
1996
, pp.
431
-
447
.
2.
Huang
,
F. H.
, “
Fracture Properties of Irradiated Alloys
,”
Avante Publishing
,
1997
, pp.
341
-
351
.
3.
Chow
,
C. K.
and
Simpson
,
L. A.
, “
Determination of the Fracture Toughness of Irradiated Reactor Pressure Tubes Using Curved Compact Specimens
,” in
Fracture Mechanics—Eighteenth Symposium
, ASTM STP 945,
Read
D. T.
and
Reed
R. P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1988
, pp.
419
-
439
.
4.
Antolovich
,
S. D.
, “
An Introduction to Fracture Mechanics
,”
ASM Handbook, American Standard for Measurements
, Vol.
19
,
1997
, pp.
971
-
380
.
5.
Hsu
,
H. H.
,
Chien
,
K. F.
,
Chu
,
H. C.
,
Kuo
,
R. C.
, and
Liaw
,
P. K.
, “
An X-Specimen Test for Determination of Thin-Walled Tube Fracture Toughness
,” in
Fatigue and Fracture Mechanics—32nd Volume
, ASTM STP 1406,
Chona
R.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
2001
, pp.
214
-
226
.
6.
Edsinger
,
K.
,
Davies
,
J. H.
, and
Adamson
,
R. B.
, “
Degraded Fuel Cladding Fractography and Fracture Behavior
,” in
Zirconium in the Nuclear Industry: Twelfth International Symposium
, ASTM STP 1354,
Sabol
G. P.
and
Moan
G. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2000
, pp.
316
-
339
.
7.
Rashid
,
Y. R.
,
Lemaignan
,
C.
, and
Strasser
,
A.
, “
Evaluation of Fracture Initiation and Extension in Fuel Cladding
,”
Proceedings, ANS International Topical Meeting—LWR Fuel Performance
,
ANS
,
Park City, UT
, April 10–13, 2000.
8.
CAST3M
,
Finite Element Code developed at CEA
, France: http://www-cast3m.cea.fr.
9.
Zahoor
,
A.
, “
Axial Throughwall Crack
,”
Ductile Fracture Handbook
,
EPRI
,
Palo Alto, CA
,
10
1990
, Chapter 6, Vol.
2
.
10.
Limon
,
R.
,
Lehmann
,
S.
,
Maury
,
R.
, and
Pelchat
,
J.
, “
Mesure des coefficients d'élasticité et d'anisotropie plastique des tubes de gainage en Zircaloy-4 X1 lère phase
,”
CEA Internal Report
, NT SRMA 95-2135, Saclay, France,
1995
.
11.
Hollomon
,
J. H.
, “
Tensile Deformation
,”
AIME Transactions
, Vol.
12
, No.
4
,
06
1945
, pp.
1
-
22
.
12.
Begley
,
J. A.
and
Landes
,
J. D.
, “
The J Integral as a Fracture Criterion
,”
Fracture Toughness, Proceedings of the 1971 National Symposium on Fracture Mechanics
, Part II, ASTM STP 514,
ASTM International
,
West Conshohocken, PA.
,
1972
, pp.
1
-
20
.
13.
Bertsch
,
J.
and
Hoffelner
,
W.
, “
J-R Curves Determination of Tube Cladding Material
,” Submitted to
J. Test. Eval.
 0090-3973,
2004
.
14.
Dhia
,
A. B.
,
Bai
,
J. B.
, and
Francois
,
D.
, “
3D Finite-element Analyses of a New Fracture Toughness Testing Method for Tubular Structures
,”
Int. J. Pressure Vessels Piping
 0308-0161, Vol.
71
,
1997
, pp.
189
-
195
.
15.
Sih
,
G. C.
, “
Fracture Mechanics in Two Decades
,” in
Fracture Mechanics: Perspectives and Directions (Twentieth Symposium)
 ASTM STP 1020,
Wei
R. P.
and
Gangloff
R. P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1989
, pp.
9
-
28
.
This content is only available via PDF.
You do not currently have access to this content.