Abstract
This paper presents a unique combination of permeability, infiltration, and clogging testing results to provide background information for the specification and design of clog-resistant pervious concrete pavements. Pervious concrete cylindrical samples of various sizes and porosities were tested using a falling-head permeameter in the laboratory. The cylindrical wall effect on porosity and permeability was determined using image analysis along with testing variability. Infiltration was tested on a series of fixed void slab samples that were then clogged with compost, soil, and a compost–soil mixture. Cleaning effectiveness was measured and related to sample properties. The results show that cylinder permeability was highly variable, with 100-mm specimens producing the least variability of the two sizes tested (75 mm and 100 mm). Slab specimens with consistent cross-sectional infiltration were the most clog resistant and had the best infiltration remediation after cleaning. Samples with initial infiltration capacities greater than 750 cm/h were the most clog resistant. The best pavement performance resulted from uniform vertical permeability distribution and high initial infiltration capacity.