Abstract

In this study, in order to examine the impact properties of a stainless steel reinforced concrete bridge pier under the conditions of horizontal impact load effects, a multifunction ultrahigh heavy drop hammer impact test system was utilized. The stainless steel reinforced concrete bridge piers had different impact energies, and the impact force time-history, displacement time-history, and strain time-history curves, as well as the crack developing state, were obtained during the testing. The test results showed that the peak values of the impact force, strain, and displacement increased with the increase of the impact energy under the impact load, and the fluctuation frequency also increased. The crack development was mainly concentrated in the lower frontal section of the bridge pier, as well as the middle and lower sections of the back of the bridge pier.

References

1.
Rajagopalan
,
N.
,
Lakhsmanan
,
N.
, and
Muthumani
,
K.
, “
Stiffness Degradation of Reinforced Concrete Beams Under Repeated Low-Energy Impact Loading
,”
Indian Concr. J.
, Vol. 
69
,
1995
, pp. 
227
234
.
2.
Jiang
,
H.
,
He
,
S.H.
, and
Wang
,
J.J.
, “
Numerical Simulation of the Impact Test of Reinforced Concrete Beams
,”
J. Vibr. Shock
, Vol. 
31
,
2012
, pp. 
140
145
.
3.
Zhang
,
G.X.
and
Zhao
,
F.
, “
Experimental Study on the Seismic Performance of the Stainless Steel Reinforced Concrete Beams (in Chinese)
,”
China Rail. Sci.
, Vol. 
31
,
2010
, pp. 
35
40
.
4.
Zhao
,
D.B.
and
Yi
,
W.J.
, “
Anti-Impact Behavior and Design Method for RC Beams
,”
J. Vibr. Shock
, Vol. 
34
,
2015
, pp. 
139
145
.
5.
Xu
,
B.
and
Zeng
,
X.
, “
Experimental Study on the Behaviors of Reinforced Concrete Beams Under Impact Loadings (in Chinese)
,”
China Civ. Eng. J.
, Vol. 
47
,
2014
, pp. 
41
51
.
6.
Tachibana
,
S.
,
Masuya
,
H.
, and
Nakamura
,
S.
, “
Performance Based Design of Reinforced Concrete Beams Under Impact
,”
Nat. Hazards Earth Syst. Sci.
, Vol. 
10
, No. 
6
,
2010
, pp. 
1069
1078
, https://doi.org/10.5194/nhess-10-1069-2010
7.
Goldston
,
M.
,
Remennikov
,
A.
, and
Sheikh
,
M.N.
, “
Experimental Investigation of the Behaviour of Concrete Beams Reinforced with GFRP Bars Under Static and Impact Loading
,”
Eng. Struct.
, Vol. 
113
,
2016
, pp. 
220
232
, https://doi.org/10.1016/j.engstruct.2016.01.044
8.
Cheng
,
X.W.
,
Li
,
Y.
,
Lu
,
X.Z.
, and
Yan
,
W.M.
, “
Numerical Investigation on Dynamic Response of Reinforced Concrete Columns Subjected to Impact Loading (in Chinese)
,”
Eng. Mech.
, Vol. 
32
,
2015
, pp. 
53
63
.
9.
Feng
,
Y.
,
Wang
,
X.G.
,
Zhang
,
Y.M.
, and
Su
,
Y.P.
, “
Experimental Study on the Effect of Reinforcement Ratio of the Capabilities of RC Column to Resist Impact Loading (in Chinese)
,”
Industrial Construction
, Vol. 
41
,
2011
, pp. 
85
88
.
10.
Thilakarathna
,
H.M. I.
,
Thambiratnam
,
D.P.
,
Dhanasekar
,
M.
, and
Perera
,
N.
, “
Numerical Simulation of Axially Loaded Concrete Columns Under Transverse Impact and Vulnerability Assessment
,”
Int. J. Impact Eng.
, Vol. 
37
, No. 
11
,
2010
, pp. 
1100
1112
, https://doi.org/10.1016/j.ijimpeng.2010.06.003
11.
Zhang
,
W.X.
and
Shan
,
J.H.
, “
Mechanics Performance Test Research of Concrete Filled Steel Tube Columns Model Subjected to Impact Loading
(in Chinese),”
J. Vibr. Shock
, Vol. 
25
,
2006
, pp. 
96
195
.
12.
Ren
,
G.P.
,
Li
,
Z.
, and
Wang
,
R.
, “
The Deflection of Concrete Filled Steel Tubular Column Under Lateral Impact at Low Speed (in Chinese)
,”
Eng. Mech.
, Vol. 
25
,
2008
, pp. 
170
175
.
13.
Wang
,
R.
,
Li
,
Z.
,
Ren
,
G.P.
,
Li
,
Y.G.
, and
Zhang
,
S.Y.
, “
Study on Dynamic Response of Concrete Filled Steel Tube Under Lateral Impact Loading (in Chinese)
,”
Eng. Mech.
, Vol. 
25
, No. 
6
,
2008
, pp. 
75
78
.
14.
Aghdamy
,
S.
,
Thambiratnam
,
D.P.
, and
Dhanasekar
,
M.
, “
Experimental Investigation on Lateral Impact Response of Concrete-Filled Double-Skin Tube Columns Using Horizontal-Impact-Testing System
,”
Exp. Mech.
, Vol. 
56
, No. 
7
,
2016
, pp. 
1133
1153
, https://doi.org/10.1007/s11340-016-0156-z
15.
Han
,
L.H.
,
Hou
,
C.C.
,
Zhao
,
X.L.
, and
Rasmussen
,
K.J.
, “
Behaviour of High-Strength Concrete Filled Steel Tubes Under Transverse Impact Loading
,”
J. Constr. Steel Res.
, Vol. 
92
,
2014
, pp. 
25
39
, https://doi.org/10.1016/j.jcsr.2013.09.003
16.
Yousuf
,
M.
,
Uy
,
B.
,
Tao
,
Z.
,
Remennikov
,
A.
, and
Liew
,
J.Y. R.
, “
Transverse Impact Resistance of Hollow and Concrete Filled Stainless Steel Columns
,”
J. Constr. Steel Res.
, Vol. 
82
,
2013
, pp. 
177
189
, https://doi.org/10.1016/j.jcsr.2013.01.005
17.
Wang
,
Y.
,
Qian
,
X.
,
Liew
,
J.R.
, and
Zhang
,
M.H.
, “
Experimental Behavior of Cement Filled Pipe-in-Pipe Composite Structures Under Transverse Impact
,”
Int. J. Impact Eng.
, Vol. 
72
,
2014
, pp. 
1
16
, https://doi.org/10.1016/j.ijimpeng.2014.05.004
18.
Wang
,
Y.
,
Qian
,
X.
,
Liew
,
J.R.
, and
Zhang
,
M.H.
, “
Impact of Cement Composite Filled Steel Tubes: An Experimental, Numerical and Theoretical Treatise
,”
Thin-Walled Struct.
, Vol. 
87
,
2015
, pp. 
76
88
, https://doi.org/10.1016/j.tws.2014.11.007
This content is only available via PDF.
You do not currently have access to this content.