Abstract

The objective of this article is to investigate the effects of temperature on rutting and fatigue cracking resistance of asphalt binders based on the time-temperature superposition principle (TTSP). In this study, the TTSP approach was employed to interpret the results of multiple stress creep recovery (MSCR) and linear amplitude sweep (LAS) tests for both neat and styrene-butadiene-styrene (SBS)–modified asphalt binders. The higher stress level of 3.2 kPa in the standard MSCR test procedure was extended to 10 and 15 kPa to verify the stress sensitivity of the nonrecoverable compliance (Jnr). A loading duration of 5 minutes in the standard LAS test was extended to 10 and 15 minutes to develop the fatigue failure criterion at different conditions. The results demonstrate that the time-strain curves of the neat binder during the MSCR tests under different temperatures can be unified into a single strain master curve using the TTSP shift factors, based on which the predictive Jnr showed good agreement with the measured values. This TTSP-based analysis approach does not work well for the MSCR results of the SBS-modified binder at high temperatures. However, the fatigue failure criterion determined from the LAS tests under different temperatures was verified to be successfully constructed into a single failure criterion according to the TTSP approach for both the neat and SBS-modified binders. Therefore, only an additional caution is raised for the TTS-based analysis on rutting resistance of the modified binder in a high temperature range.

References

1.
Christensen
,
D. W.
and
Anderson
,
D. A.
, “
Interpretation of Dynamic Mechanical Test Data for Paving Grade Asphalt Cements
,”
J. Assoc. Asphalt Paving Technol.
, Vol. 
61
,
1992
, pp. 
67
116
.
2.
Marasteanu
,
M. O.
and
Anderson
,
D. A.
, “
Time-Temperature Dependency of Asphalt Binders—An Improved Model
,”
J. Assoc. Asphalt Paving Technol.
, Vol. 
65
,
1996
, pp. 
408
448
.
3.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquid
,”
J. Am. Chem. Soc.
, Vol. 
77
, No. 
14
,
1955
, pp. 
3701
3707
, https://doi.org/10.1021/ja01619a008
4.
Bahia
,
H. U.
,
Hanson
,
D. I.
,
Zeng
,
M.
,
Zhai
,
H.
,
Khatri
,
M. A.
, and
Anderson
,
R. M.
,
Characterization of Modified Asphalt Binders in Superpave Mix Design, NCHRP Report 459
,
Transportation Research Board, National Research Council
,
Washington, DC
,
2001
, 176p.
5.
Schwartz
,
C. W.
,
Gibson
,
N.
, and
Schapery
,
R. A.
, “
Time–Temperature Superposition for Asphalt Concrete at Large Compressive Strains
,”
Transp. Res. Rec.
, Vol. 
1789
,
2002
, pp. 
101
112
, https://doi.org/10.3141/1789-11
6.
Zhao
,
Y.
and
Kim
,
Y. R.
, “
Time-Temperature Superposition for Asphalt Mixtures with Growing Damage and Permanent Deformation in Compression
,”
Transp. Res. Rec.
, Vol. 
1832
,
2003
, pp. 
161
172
.
7.
Yun
,
T.
,
Underwood
,
B. S.
, and
Kim
,
Y. R.
, “
Time-Temperature Superposition for HMA with Growing Damage and Permanent Strain in Confined Tension and Compression
,”
J. Mater. Civ. Eng.
, Vol. 
22
, No. 
5
,
2010
, pp. 
415
422
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000039
8.
Choi
,
Y.
and
Kim
,
Y. R.
, “
Development of Characterisation Models for Incremental Permanent Deformation Model for Asphalt Concrete in Confined Compression
,”
Road Mater. Pavement Des.
, Vol. 
14
, No. 
S2
,
2013
, pp. 
266
288
, https://doi.org/10.1080/14680629.2013.812847
9.
Choi
,
Y.
and
Kim
,
Y. R.
, “
Implementation and Verification of a Mechanistic Permanent Deformation Model (Shift Model) to Predict Rut Depths of Asphalt Pavement
,”
Road Mater. Pavement Des.
, Vol. 
15
, No. 
S1
,
2014
, pp. 
195
218
, https://doi.org/10.1080/14680629.2014.927085
10.
Khosravifar
,
S.
,
Haider
,
I.
,
Afsharikia
,
Z.
, and
Schwartz
,
C. W.
, “
Application of Time–Temperature Superposition to Develop Master Curves of Cumulative Plastic Strain in Repeated Load Permanent Deformation Tests
,”
Int. J. Pavement Eng.
, Vol. 
16
, No. 
3
,
2014
, pp. 
214
223
, https://doi.org/10.1080/10298436.2014.937810
11.
Chehab
,
G. R.
,
Kim
,
Y. R.
,
Schapery
,
R. A.
,
Witczak
,
M. W.
, and
Bonaquist
,
R.
, “
Time-Temperature Superposition Principle for Asphalt Concrete Mixtures with Growing Damage in Tension State
,”
J. Assoc. Asphalt Paving Technol.
, Vol. 
71
,
2002
, pp. 
559
593
.
12.
Wen
,
H.
,
Li
,
X.
, and
Bhusal
,
S.
, “
Modeling the Effects of Temperature and Loading Rate on Fatigue Properties of Hot Mixed Asphalt
,”
Int. J. Pavement Eng.
, Vol. 
15
, No. 
1
,
2012
, pp. 
51
57
, https://doi.org/10.1080/10298436.2012.746687
13.
Nguyen
,
Q. T.
,
Di Benedetto
,
H.
,
Sauzéat
,
C.
, and
Tapsoba
,
N.
, “
Time-Temperature Superposition Principle Validation for Bituminous Mixes in the Linear and Nonlinear Domains
,”
J. Mater. Civ. Eng.
, Vol. 
25
, No. 
9
,
2013
, pp. 
1181
1188
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000658
14.
Andriescu
,
A.
and
Hesp
,
S. A. M.
, “
Time–Temperature Superposition in Rheology and Ductile Failure of Asphalt Binders
,”
Int. J. Pavement Eng.
, Vol. 
10
, No. 
4
,
2009
, pp. 
229
240
, https://doi.org/10.1080/10298430802169440
15.
Wen
,
H.
,
Shen
,
S.
,
Ma
,
Z.
, and
Wang
,
J.
, “
Modeling the Effects of Temperature and Loading Rate on Fatigue Property of Asphalt Binder
,”
J. Test. Eval.
, Vol. 
38
, No. 
6
,
2010
, pp. 
647
652
, https://doi.org/10.1520/JTE102806
16.
Safaei
,
F.
and
Hintz
,
C.
, “
Investigation of the Effect of Temperature on Asphalt Binder Fatigue
,” presented at the
Twelfth International Society for Asphalt Pavements (ISAP) Conference
, Raleigh, NC, June 1–5,
2014
,
Taylor & Francis Group
,
London, United Kingdom
, pp. 
1491
1500
.
17.
AASHTO MP 19
Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test
,
American Association of State Highway and Transportation Officials
,
Washington, DC
,
2010
, www.transportation.org
18.
AASHTO TP 70
Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)
,
American Association of State Highway and Transportation Officials
,
Washington, DC
,
2010
, www.transportation.org
19.
AASHTO T 315
Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)
,
American Association of State Highway and Transportation Officials
,
Washington, DC
,
2006
, www.transportation.org
20.
Johnson
,
C. M.
, “
Estimating Asphalt Binder Fatigue Resistance Using an Accelerated Test Method
,” Ph.D. dissertation,
University of Wisconsin-Madison
, Madison, WI,
2010
.
21.
Hintz
,
C.
and
Bahia
,
H.
, “
Simplification of Linear Amplitude Sweep Test and Specification Parameter
,”
Transp. Res. Rec.
, Vol. 
2370
,
2013
, pp. 
10
16
, https://doi.org/10.3141/2370-02
22.
AASHTO TP 101
Standard Method of Test for Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep
,
American Association of State Highway and Transportation Officials
,
Washington, DC
,
2014
, www.transportation.org
23.
Wang
,
C.
,
Castorena
,
C.
,
Zhang
,
J.
, and
Kim
,
Y. R.
, “
Unified Failure Criterion for Asphalt Binder under Cyclic Fatigue Loading
,”
Road Mater. Pavement Des.
, Vol. 
16
, No. S2,
2015
, pp. 
269
299
.
24.
Underwood
,
B. S.
, “
Multiscale Constitutive Modeling of Asphalt Concrete
,” Ph.D. dissertation,
North Carolina State University
, Raleigh, NC,
2011
.
25.
Schapery
,
R. A.
, “
Correspondence Principles and a Generalized J-Integral for Large Deformation and Fracture Analysis of Viscoelastic Media
,”
Int. J. Fract.
, Vol. 
25
, No. 
3
,
1984
, pp. 
195
223
, https://doi.org/10.1007/BF01140837
26.
Yen
,
S.-C.
and
Williamson
,
F. L.
, “
Accelerated Characterization of Creep Response of an Off-Axis Composite Material
,”
Compos. Sci. Technol.
, Vol. 
38
, No. 
2
,
1990
, pp. 
103
118
, https://doi.org/10.1016/0266-3538(90)90001-L
27.
Jazouli
,
S.
,
Luo
,
W.
,
Brémand
,
F.
, and
Vu-Khanh
,
T.
, “
Nonlinear Creep Behavior of Viscoelastic Polycarbonate
,”
J. Mater. Sci.
, Vol. 
41
, No. 
2
,
2006
, pp. 
531
536
, https://doi.org/10.1007/s10853-005-2276-1
28.
Starkova
,
O.
,
Yang
,
J.
, and
Zhang
,
Z.
, “
Application of Time–Stress Superposition to Nonlinear Creep of Polyamide 66 Filled with Nanoparticles of Various Sizes
,”
Compos. Sci. Technol.
, Vol. 
67
, No. 
13
,
2007
, pp. 
2691
2698
, https://doi.org/10.1016/j.compscitech.2007.02.014
29.
Chang
,
F.-C.
,
Lam
,
F.
, and
Kadla
,
J. F.
, “
Application of Time–Temperature–Stress Superposition on Creep of Wood–Plastic Composites
,”
Mech. Time-Depend. Mater.
, Vol. 
17
, No. 
3
,
2013
, pp. 
427
437
, https://doi.org/10.1007/s11043-012-9194-9
This content is only available via PDF.
You do not currently have access to this content.