Abstract

Crevice corrosion is one of the major mechanisms that drives implant failure in orthopedic devices that have modular interfaces. Despite the prevalence of crevice corrosion in modular interfaces, very little is known with regards to the susceptibility of different material combinations to participate in crevice corrosion. In this study, we compare two electrochemical methods, ASTM F2129, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices, and a modified version of ASTM F746, Standard Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials, in their ability to induce crevice corrosion. Four commonly used metals, 316 stainless steel, commercially pure titanium (Ti grade 2), Ti-6Al-4V (Ti grade 5), and cobalt–chromium–molybdenum per ASTM F1537, Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants (UNS R31537, UNS R31538, and UNS R31539), were used to form crevices with a rod and washer combination. As a control, the metal rod materials were tested alone in the absence of crevices using ASTM F2129 and the modified ASTM F746 method. As another control to determine if crevices formed with polymeric materials would influence crevice corrosion susceptibility, experiments were also conducted with metal rods and polytetrafluorethylene washers. Our results revealed more visible corrosion after ASTM F2129 than ASTM F746. Additionally, ASTM F746 was found to falsely identify crevice corrosion per the critical pitting potential when visual inspection found no evidence of crevice corrosion. Hence, ASTM F2129 was found to be more effective overall at evaluating crevice corrosion compared to ASTM F746.

References

1.
Higgs
G. B.
,
Hanzlik
J. A.
,
MacDonald
D. W.
,
Gilbert
J. L.
,
Rimnac
C. M.
, and
Kurtz
S. M.
, “
Is Increased Modularity Associated with Increased Fretting and Corrosion Damage in Metal-on-Metal Total Hip Arthroplasty Devices?
The Journal of Arthroplasty
28
, no. 
8
(
2013
):
2
6
, https://doi.org/10.1016/j.arth.2013.05.040
2.
Kop
A. M.
and
Swarts
E.
, “
Corrosion of a Hip Stem with a Modular Neck Taper Junction: A Retrieval Study of 16 Cases
,”
The Journal of Arthroplasty
24
, no. 
7
(October
2009
):
1019
1023
, https://doi.org/10.1016/j.arth.2008.09.009
3.
Gascoyne
T. C.
,
Dyrkacz
R. M.
,
Turgeon
T. R.
,
Burnell
C. D.
,
Wyss
U. P.
, and
Brandt
J. M.
, “
Corrosion on the Acetabular Liner Taper from Retrieved Modular Metal-on-Metal Total Hip Replacements
,”
The Journal of Arthroplasty
29
, no. 
10
(October
2014
):
2049
2052
, https://doi.org/10.1016/j.arth.2014.05.027
4.
Brown
S. A.
,
Flemming
C. A. C.
,
Kawalec
J. S.
,
Placko
H. E.
,
Vassaux
C.
,
Merritt
K.
,
Payer
J. H
, and
Kraay
M. J.
, “
Fretting Corrosion Accelerates Crevice Corrosion of Modular Hip Tapers
,”
Journal of Applied Biomaterials
6
, no. 
1
(Spring
1995
):
19
26
, https://doi.org/10.1002/jab.770060104
5.
Gilbert
J. L.
,
Buckley
C. A.
, and
Jacobs
J. J.
, “
In Vivo Corrosion of Modular Hip Prosthesis Components in Mixed and Similar Metal Combinations. The Effect of Crevice, Stress, Motion, and Alloy Coupling
,”
Journal of Biomedical Materials Research
27
, no. 
12
(December
1993
):
1533
1544
, https://doi.org/10.1002/jbm.820271210
6.
Huber
M.
,
Reinisch
G.
,
Trettenhahn
G.
,
Zweymüller
K.
, and
Lintner
F.
, “
Presence of Corrosion Products and Hypersensitivity-Associated Reactions in Periprosthetic Tissue after Aseptic Loosening of Total Hip Replacements with Metal Bearing Surfaces
,”
Acta Biomaterialia
5
, no. 
1
(January
2009
):
172
180
, https://doi.org/10.1016/j.actbio.2008.07.032
7.
Natu
S.
,
Sidaginamale
R. P.
,
Gandhi
J.
,
Langton
D. J.
, and
Nargol
A. V.
, “
Adverse Reactions to Metal Debris: Histopathological Features of Periprosthetic Soft Tissue Reactions Seen in Association with Failed Metal on Metal HipAarthroplasties
,”
Journal of Clinical Pathology
65
, no. 
5
(March
2012
):
409
418
, https://doi.org/10.1136/jclinpath-2011-200398
8.
Campbell
P.
,
Ebramzadeh
E.
,
Nelson
S.
,
Takamura
K.
,
De Smet
K.
, and
Amstutz
H. C.
, “
Histological Features of Pseudotumor-like Tissues from Metal-on-Metal Hips
,”
Clinical Orthopaedics and Related Research
468
, no. 
9
(September
2010
):
2321
2327
, https://doi.org/10.1007/s11999-010-1372-y
9.
Whitehouse
M. R.
,
Endo
M.
, and
Masri
B. A.
, “
Adverse Local Tissue Reaction Associated with a Modular Hip Hemiarthroplasty
,”
Clinical Orthopaedics and Related Research
471
, no. 
12
(December
2013
):
4082
4086
, https://doi.org/10.1007/s11999-013-3133-1
10.
Dyrkacz
R. M. R.
,
Brandt
J. M.
,
Ojo
O. A.
,
Turgeon
T. R.
, and
Wyss
U. P.
, “
The Influence of Head Size on Corrosion and Fretting Behaviour at the Head-Neck Interface of Artificial Hip Joints
,”
The Journal of Arthroplasty
28
, no. 
6
(June
2013
):
1036
1040
, https://doi.org/10.1016/j.arth.2012.10.017
11.
Kocagöz
S. B.
,
Underwood
R. J.
,
Sivan
S.
,
Gilbert
J. L.
,
MacDonald
D. W.
,
Day
J. S.
, and
Kurtz
S. M.
, “
Does Taper Angle Clearance Influence Fretting and Corrosion Damage at the Head-Stem Interface? A Matched Cohort Retrieval Study
,”
Semin Arthro
24
, no. 
4
(December
2013
):
246
254
, https://doi.org/10.1053/j.sart.2014.01.002
12.
Arnholt
C. M.
,
MacDonald
D. W.
,
Underwood
R. J.
,
Guyer
E. P.
,
Rimnac
C. M.
,
Kurtz
S. M.
,
Mont
M. A.
,
Klein
G. R.
,
Lee
G. C.
, and
Chen
A. F.
, “
Do Stem Taper Microgrooves Influence Taper Corrosion in Total Hip Arthroplasty? A Matched Cohort Retrieval Study
,”
The Journal of Arthroplasty
32
, no. 
4
(April
2017
):
1363
1373
, https://doi.org/10.1016/j.arth.2016.11.018
13.
Jacobs
J. J.
, “
Corrosion at the Head-Neck Junction: Why is This Happening Now?
The Journal of Arthroplasty
31
, no. 
7
(July
2016
):
1378
1380
, https://doi.org/10.1016/j.arth.2016.03.029
14.
Kop
A. M.
,
Keogh
C.
, and
Swarts
E.
, “
Proximal Component Modularity in THA—At What Cost? An Implant Retrieval Study
,”
Clinical Orthopaedics and Related Research
470
, no. 
7
(July
2012
):
1885
1894
, https://doi.org/10.1007/s11999-011-2155-9
15.
Serhan
H.
,
Slivka
M.
,
Albert
T.
, and
Kwak
S. D.
, “
Is Galvanic Corrosion between Titanium Alloy and Stainless Steel Spinal Implants a Clinical Concern?
The Spine Journal
4
, no. 
4
(July–August
2004
):
379
387
, https://doi.org/10.1016/j.spinee.2003.12.004
16.
Mears
D. C.
, “
The Use of Dissimilar Metals in Surgery
,”
Journal of Biomedical Materials Research
9
, no. 
4
(July
1975
):
133
148
, https://doi.org/10.1002/jbm.820090417
17.
Rostoker
W.
,
Pretzel
C. W.
, and
Galante
J. O.
, “
Couple Corrosion among Alloys for Skeletal Prostheses
,”
Journal of Biomedical Materials Research
8
, no. 
6
(November
1974
):
407
419
, https://doi.org/10.1002/jbm.820080609
18.
Lucas
L. C.
,
Buchanan
R. A.
, and
Lemons
J. E.
, “
Investigations on the Galvanic Corrosion of Multialloy Total Hip Prostheses
,”
Journal of Biomedical Materials Research
15
. no. 
5
(September
1981
):
731
747
, https://doi.org/10.1002/jbm.820150509
19.
Standard Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials
, ASTM F746–04 (
2014
) (
West Conshohocken, PA
:
ASTM International
, approved 2014).
20.
Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices
(Superseded), ASTM F2129-15 (
West Conshohocken, PA
:
ASTM International
, approved
2015
).
21.
Rodrigues
D. C.
,
Urban
R. M.
,
Jacobs
J. J.
, and
Gilbert
J. L.
, “
In Vivo Severe Corrosion and Hydrogen Embrittlement of Retrieved Modular Body Titanium Alloy Hip-Implants
,”
Journal of Biomedical Materials Research
88B
, no. 
1
(January
2009
):
206
219
, https://doi.org/10.1002/jbm.b.31171
22.
Gilbert
J. L.
,
Mali
S.
,
Urban
R. M.
,
Silverton
C. D.
, and
Jacobs
J. J.
, “
In Vivo Oxide-Induced Stress Corrosion Cracking of Ti-6Al-4V in a Neck-Stem Modular Taper: Emergent Behavior in a New Mechanism of In Vivo Corrosion
,”
Journal of Biomedical Materials Research
100B
, no. 
2
(February
2012
):
584
594
, https://doi.org/10.1002/jbm.b.31943
23.
Pound
B. G.
, “
Electrochemical Behavior of Cobalt–Chromium Alloys in a Simulated Physiological Solution
,”
Journal of Biomedical Materials Research
94A
, no. 
1
(July
2010
):
93
102
, https://doi.org/10.1002/jbm.a.32684
24.
Panigrahi
P.
,
Liao
Y.
,
Mathew
M. T.
,
Fischer
A.
,
Wimmer
M. A.
,
Jacobs
J. J.
, and
Marks
L. D.
, “
Intergranular Pitting Corrosion of CoCrMo Biomedical Implant Alloy
,”
Journal of Biomedical Materials Research
102
, no. 
4
(May
2014
):
850
859
, https://doi.org/10.1002/jbm.b.33067
25.
Reclaru
L.
,
Lerf
R.
,
Eschler
P.-Y.
,
Blatter
A.
, and
Meyer
J.-M.
, “
Pitting, Crevice and Galvanic Corrosion of REX Stainless-Steel/CoCr Orthopedic Implant Material
,”
Biomaterials
23
, no. 
16
(August
2002
):
3479
3485
, https://doi.org/10.1016/S0142-9612(02)00055-8
26.
Trépanier
C.
,
Gong
X.-Y.
,
Ditter
T.
,
Pelton
A.
,
Neely
Y.
, and
Grishaber
R.
, “
Effect of Wear and Crevice on the Corrosion Resistance of Overlapped Stents
,” in
SMST-2006: Proceedings of the 2006 International Conference on Shape Memory and Superelastic Technology
(
Materials Park, OH
:
ASM International
,
2006
):
1
11
.
27.
Cahoon
J. R.
,
Bandyopadhya
R.
, and
Tennese
L.
, “
The Concept of Protection Potential Applied to the Corrosion of Metallic Orthopedic Implants
,”
Journal of Biomedical Materials Research
9
, no. 
3
(May
1975
):
259
264
, https://doi.org/10.1002/jbm.820090302
28.
Rondelli
G.
, “
Corrosion Resistance Tests on NiTi Shape Memory Alloy
,”
Biomaterials
17
, no. 
20
(October
1996
):
2003
2008
, https://doi.org/10.1016/0142-9612(95)00352-5
29.
Brooks
E. K.
,
Brooks
R. P.
, and
Ehrensberger
M. T.
, “
Effects of Simulated Inflammation on the Corrosion of 316L Stainless Steel
,”
Materials Science and Engineering: C
71
(February
2017
):
200
205
, https://doi.org/10.1016/j.msec.2016.10.012
This content is only available via PDF.
You do not currently have access to this content.