Abstract

This article presents the details of an experimental investigation carried out on test specimens to assess the effect of the addition of steel, polypropylene fibers, and hybrid fibers (steel and polypropylene) at a total fiber volume fraction of 1.0 % by volume of concrete on the workability and strength-related properties of high performance concrete (HPC) utilizing bagasse ash. All the fiber-reinforced high performance concrete composites contained 10 % bagasse ash to replace cement. The results of the experimental study show that the addition of bagasse ash enhances the mechanical properties of conventional concrete. The incorporation of steel and polypropylene fibers improved the mechanical properties of bagasse blended HPC at each volume fraction considered in this study. Subsequently, it was observed that the addition of 0.75 % steel and 0.45 % polypropylene fibers significantly improved the strength of concrete. The various combinations of steel and polypropylene fibers are investigated, and among these, the best performance was attained by a mixture that contained 0.85 % steel and 0.15 % polypropylene fiber.

References

1.
Brandt
,
A. M.
, “
Fiber Reinforced Cement Based (FRC) Composites after Over 40 Years of Development in Building and Civil Engineering
,”
Compos. Struct.
, Vol. 
86
, Nos. 
1–3
,
2008
, pp. 
3
9
, https://doi.org/10.1016/j.compstruct.2008.03.006
2.
Farnam
,
Y.
,
Mohammadi
,
S.
, and
Shekarchi
,
M.
, “
Experimental and Numerical Investigations of Low Velocity Impact Behaviour of High-Performance Fiber Reinforced Cement Based Composite
,”
Int. J. Impact Eng
, Vol. 
37
, No. 
2
,
2010
, pp. 
220
229
, https://doi.org/10.1016/j.ijimpeng.2009.08.006
3.
Breitenbuecher
,
R.
, “
High Performance Fiber Concrete SIFCON for Repairing Environmental Structures
,”
Third International RILEM Workshop on High Performance Fiber Reinforced Cement Composites
,
Reinhardt
H. W.
and
Naaman
A. E.
, Eds.,
RILEM Publications
,
Cachan, France
,
1999
, pp. 
585
594
.
4.
Kuder
,
K. G.
and
Shah
,
S. P.
, “
Processing of High-Performance Fiber-Reinforced Cement Based Composites
,”
Constr. Build. Mater.
, Vol. 
24
, No. 
2
,
2010
, pp. 
181
186
, https://doi.org/10.1016/j.conbuildmat.2007.06.018
5.
Balaguru
,
P. N
and
Shah
,
S. P.
,
Fiber-Reinforced Cement Composites
,
McGraw-Hill Inc.
,
New York, NY
,
1992
, 530p.
6.
Lau
,
A.
and
Anson
,
M.
, “
Effect of High Temperature on High Performance Steel Fiber Reinforced Concrete
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
9
,
2006
, pp. 
1698
1707
, https://doi.org/10.1016/j.cemconres.2006.03.024
7.
Yao
,
W.
,
Li
,
J.
, and
Wu
,
K.
, “
Mechanical Properties of Hybrid Fiber-Reinforced Concrete at Low Fiber Volume Fraction
,”
Cem. Concr. Res.
, Vol. 
33
, No. 
1
,
2003
, pp. 
27
30
, https://doi.org/10.1016/S0008-8846(02)00913-4
8.
Yu
,
R.
,
Spiesz
,
P.
, and
Brouwers
,
H. J. H.
, “
Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an Efficient Utilization of Binders and Fibre
,”
Constr. Build. Mater.
, Vol. 
79
,
2015
, pp. 
273
282
, https://doi.org/10.1016/j.conbuildmat.2015.01.050
9.
Aitcin
,
P. C.
,
High Performance Concrete
,
CRC Press
,
Boca Raton, FL
,
1998
, 624p.
10.
IS 7320
Specification for Concrete Slump Test Apparatus
,
Bureau of Indian Standards
,
New Delhi, India
,
2008
, www.bis.gov
11.
IS 9799
Specification for Pressure Meter for Determination of Air Content of Freshly Mixed Concrete
,
Bureau of Indian Standards
,
New Delhi, India
,
2004
, www.bis.gov
12.
IS 516
Method of Tests for Strength of Concrete
,
Bureau of Indian Standards
,
New Delhi
,
India
,
2004
, www.bis.gov
13.
IS 5816
Splitting Tensile Strength of Concrete—Method of Test
,
Bureau of Indian Standards
,
New Delhi
,
India
,
2004
, www.bis.gov
14.
Neville
,
A. M.
,
Properties of Concrete
,
Pearson Publications
,
New York, NY
,
2011
, 872p.
15.
Soylev
,
T. A.
and
Ozturan
,
T.
, “
Durability, Physical and Mechanical Properties of Fiber-Reinforced Concretes at Low-Volume Fraction
,”
Constr. Build. Mater.
, Vol. 
73
,
2014
, pp. 
67
75
, https://doi.org/10.1016/j.conbuildmat.2014.09.058
16.
Yoo
,
D.-Y.
,
Lee
,
J.-H.
, and
Yoon
,
Y.-S.
, “
Effect of Fiber Content on Mechanical and Fracture Properties of Ultra-High Performance Fiber Reinforced Cementitious Composites
,”
Compos. Struct.
, Vol. 
106
,
2013
, pp. 
742
753
, https://doi.org/10.1016/j.compstruct.2013.07.033
17.
Song
,
P. S.
and
Hwang
,
S.
, “
Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete
,”
Constr. Build. Mater.
, Vol. 
18
, No. 
9
,
2004
, pp. 
669
673
, https://doi.org/10.1016/j.conbuildmat.2004.04.027
18.
Thomas
,
J.
and
Ramaswamy
,
A.
, “
Mechanical Properties of Steel Fiber-Reinforced Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
19
, No. 
5
,
2007
, pp. 
385
392
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
19.
Yap
,
S. P.
,
Khaw
,
K. R.
,
Alengaram
,
U. J.
, and
Jumaat
,
M. Z.
, “
Effect of Fibre Aspect Ratio on the Torsional Behaviour of Steel Fibre-Reinforced Normal Weight Concrete and Lightweight Concrete
,”
Eng. Struct.
, Vol. 
101
,
2015
, pp. 
24
33
, https://doi.org/10.1016/j.engstruct.2015.07.007
20.
Boulekbache
,
B.
,
Hamrat
,
M.
,
Chemrouk
,
M.
, and
Amziane
,
S.
, “
Flexural Behaviour of Steel Fibre-Reinforced Concrete under Cyclic Loading
,”
Constr. Build. Mater.
, Vol. 
126
,
2016
, pp. 
253
262
.
21.
Afroughsabet
,
V.
and
Ozbakkaloglu
,
T.
, “
Mechanical and Durability Properties of High-Strength Concrete Containing Steel and Polypropylenefibers
,”
Constr. Build. Mater.
, Vol. 
94
,
2015
, pp. 
73
82
, https://doi.org/10.1016/j.conbuildmat.2015.06.051
This content is only available via PDF.
You do not currently have access to this content.