Abstract

Recently, visible/near-infrared (Vis/NIR) spectroscopy has been used in the agricultural field, especially in the food industry, for monitoring food quality, postharvest handling of products, and identification of contamination on animal feeds, as well as prediction of a variety of fruits or vegetables. In this study, six products of the cucurbitaceous commodity, including zucchini, bitter gourd, ridge gourd, melon, chayote, and cucumber, were classified using Vis/NIR spectral data. After testing spectral data as feature, we also extracted statistical features and tested them with k-nearest neighbor, Bayes, decision tree, and support vector machines classifiers. We obtained a classification accuracy rate of 99 % on the test data by applying standard normal variate technique as a preprocessing stage. The results showed that cucurbitaceous commodity could be successfully classified using Vis/NIR spectra data.

References

1.
Rolnik
A.
and
Olas
B.
, “
Vegetables from the Cucurbitaceae Family and Their Products: Positive Effect on Human Health
,”
Nutrition
78
(October
2020
): 110788, https://doi.org/10.1016/j.nut.2020.110788
2.
Kusumiyati
K.
,
Hadiwijaya
Y.
,
Putri
I. E.
, and
Munawar
A. A.
, “
Multi-product Calibration Model for Soluble Solids and Water Content Quantification in Cucurbitaceae Family, Using Visible/Near-Infrared Spectroscopy
,”
Heliyon
7
, no. 
8
(August
2021
): E07677, https://doi.org/10.1016/j.heliyon.2021.e07677
3.
Rajasree
R. S.
,
Sibi
P. I.
,
Francis
F.
, and
William
H.
, “
Phytochemicals of Cucurbitaceae Family—A Review
,”
International Journal of Pharmacognosy and Phytochemical Research
8
, no. 
1
(January
2016
):
113
123
.
4.
Abu-Khalaf
N.
and
Hmidat
M.
, “
Visible/Near Infrared (VIS/NIR) Spectroscopy as an Optical Sensor for Evaluating Olive Oil Quality
,”
Computers and Electronics in Agriculture
173
(June
2020
): 105445, https://doi.org/10.1016/j.compag.2020.105445
5.
Sankaran
S.
,
Mishra
A.
,
Maja
J. M.
, and
Ehsani
R.
, “
Visible-Near Infrared Spectroscopy for Detection of Huanglongbing in Citrus Orchards
,”
Computers and Electronics in Agriculture
77
, no. 
2
(July
2011
):
127
134
, https://doi.org/10.1016/j.compag.2011.03.004
6.
Barbin
D. F.
,
Maciel
L. F.
,
Bazoni
C. H. V.
,
da Silva Ribeiro
M.
,
Carvalho
R. D. S.
,
da Silva Bispo
E.
, and
Hirooka
E. Y.
, “
Classification and Compositional Characterization of Different Varieties of Cocoa Beans by Near Infrared Spectroscopy and Multivariate Statistical Analyses
,”
Journal of Food Science and Technology
55
, no. 
7
(July
2018
):
2457
2466
, https://doi.org/10.1007/s13197-018-3163-5
7.
Wu
X.
,
Wu
B.
,
Sun
J.
, and
Yang
N.
, “
Classification of Apple Varieties Using Near Infrared Reflectance Spectroscopy and Fuzzy Discriminant C‐Means Clustering Model
,”
Journal of Food Process Engineering
40
, no. 
2
(April
2017
): e12355, https://doi.org/10.1111/jfpe.12355
8.
Suphamitmongkol
W.
,
Nie
G.
,
Liu
R.
,
Kasemsumran
S.
, and
Shi
Y.
, “
An Alternative Approach for the Classification of Orange Varieties Based on Near Infrared Spectroscopy
,”
Computers and Electronics in Agriculture
91
(February
2013
):
87
93
, https://doi.org/10.1016/j.compag.2012.11.014
9.
Jiang
H.
,
Jiang
X.
,
Ru
Y.
,
Chen
Q.
,
Xu
L.
, and
Zhou
H.
, “
Sweetness Detection and Grading of Peaches and Nectarines by Combining Short-and Long-Wave Fourier-Transform Near-Infrared Spectroscopy
,”
Analytical Letters
54
, no. 
7
(July
2020
):
1125
1144
, https://doi.org/10.1080/00032719.2020.1795186
10.
Ning
J.
,
Sun
J.
,
Li
S.
,
Sheng
M.
, and
Zhang
Z.
, “
Classification of Five Chinese Tea Categories with Different Fermentation Degrees Using Visible and Near-Infrared Hyperspectral Imaging
,”
International Journal of Food Properties
20
, no. 
sup2
(December
2017
):
1515
1522
, https://doi.org/10.1080/10942912.2016.1233115
11.
Chen
L.
,
Wang
J.
,
Ye
Z.
,
Zhao
J.
,
Xue
X.
,
Vander Heyden
Y.
, and
Sun
Q.
, “
Classification of Chinese Honeys According to Their Floral Origin by Near Infrared Spectroscopy
,”
Food Chemistry
135
, no. 
2
(November
2012
):
338
342
, https://doi.org/10.1016/j.foodchem.2012.02.156
12.
Kusumiyati
K.
,
Hadiwijaya
Y.
,
Putri
I. E.
, and
Munawar
A. A.
, “
Enhanced Visible/Near-Infrared Spectroscopic Data for Prediction of Quality Attributes in Cucurbitaceae Commodities
,”
Data in Brief
39
(December
2021
): 107458, https://doi.org/10.1016/j.dib.2021.107458
13.
Daniel
M.
,
Guerra
R.
,
Brázio
A.
,
Rodrigues
D.
,
Cavaco
A. M.
,
Antunes
M. D.
, and
de Oliveira
J. V.
, “
Feature Discovery in NIR Spectroscopy Based Rocha Pear Classification
,”
Expert Systems with Applications
177
(September
2021
): 114949, https://doi.org/10.1016/j.eswa.2021.114949
14.
Xia
J.
,
Zhang
W.
,
Yang
Y.
,
Hu
G.
,
Ge
D.
,
Liu
H.
, and
Cao
H.
, “
A Cloud Computing-Based Approach Using the Visible Near-Infrared Spectrum to Classify Greenhouse Tomato Plants under Water Stress
,”
Computers and Electronics in Agriculture
181
(February
2021
): 105966, https://doi.org/10.1016/j.compag.2020.105966
15.
Sonobe
R.
,
Yamashita
H.
,
Mihara
H.
,
Morita
A.
, and
Ikka
T.
, “
Hyperspectral Reflectance Sensing for Quantifying Leaf Chlorophyll Content in Wasabi Leaves Using Spectral Pre-processing Techniques and Machine Learning Algorithms
,”
International Journal of Remote Sensing
42
, no. 
4
(February
2021
):
1311
1329
, https://doi.org/10.1080/01431161.2020.1826065
16.
Lan
T.
,
Tong
C.
,
Chen
X.
,
Shi
X.
, and
Chen
Y.
, “
KPI Relevant and Irrelevant Fault Monitoring with Neighborhood Component Analysis and Two-Level PLS
,”
Journal of the Franklin Institute
355
, no. 
16
(November
2018
):
8049
8064
, https://doi.org/10.1016/j.jfranklin.2018.07.016
17.
Pham
B. T.
,
Van Dao
D.
,
Acharya
T. D.
,
Van Phong
T.
,
Costache
R.
,
Van Le
H.
, and
Prakash
I.
, “
Performance Assessment of Artificial Neural Network Using Chi-Square and Backward Elimination Feature Selection Methods for Landslide Susceptibility Analysis
,”
Environmental Earth Sciences
80
, no. 
20
(October
2021
): 686, https://doi.org/10.1007/s12665-021-09998-5
18.
Amirruddin
A. D.
,
Muharam
F. M.
,
Ismail
M. H.
,
Ismail
M. F.
,
Tan
N. P.
, and
Karam
D. S.
, “
Hyperspectral Remote Sensing for Assessment of Chlorophyll Sufficiency Levels in Mature Oil Palm (Elaeis guineensis) Based on Frond Numbers: Analysis of Decision Tree and Random Forest
,”
Computers and Electronics in Agriculture
169
(February
2020
): 105221, https://doi.org/10.1016/j.compag.2020.105221
19.
Liakos
K. G.
,
Busato
P.
,
Moshou
D.
,
Pearson
S.
, and
Bochtis
D.
, “
Machine Learning in Agriculture: A Review
,”
Sensors
18
, no. 
8
(August
2018
): 2674, https://doi.org/10.3390/s18082674
20.
Singh
A.
,
Ganapathysubramanian
B.
,
Singh
A. K.
, and
Sarkar
S.
, “
Machine Learning for High-Throughput Stress Phenotyping in Plants
,”
Trends in Plant Science
21
, no. 
2
(February
2016
):
110
124
, https://doi.org/10.1016/j.tplants.2015.10.015https://pubmed.ncbi.nlm.nih.gov/26651918
21.
Aydemir
T.
,
Şahin
M.
, and
Aydemir
O.
, “
A New Method for Activity Monitoring Using Photoplethysmography Signals Recorded by Wireless Sensor
,”
Journal of Medical and Biological Engineering
40
, no. 
6
(December
2020
):
934
942
, https://doi.org/10.1007/s40846-020-00573-0
22.
Lotte
F.
,
Bougrain
L.
,
Cichocki
A.
,
Clerc
M.
,
Congedo
M.
,
Rakotomamonjy
A.
, and
Yger
F.
, “
A Review of Classification Algorithms for EEG-Based Brain–Computer Interfaces: A 10 Year Update
,”
Journal of Neural Engineering
15
, no. 
3
(April
2018
): 031005, https://doi.org/10.1088/1741-2552/aab2f2
23.
Aydemir
O.
, “
A New Performance Evaluation Metric for Classifiers: Polygon Area Metric
,”
Journal of Classification
38
, no. 
1
(April
2021
):
16
26
, https://doi.org/10.1007/s00357-020-09362-5
This content is only available via PDF.
You do not currently have access to this content.