Abstract

Transportation is undergoing a radical transformation toward a novel way of thinking about road pavement: a sustainable, multifunctional infrastructure able to satisfy mobility needs, ensuring high safety standards, low carbon impact, automated detection through smart sensors, and resilience against natural and anthropogenic hazards. In this scenario, the road could also play a role for energy harvesting, thanks to the exploitation of solar radiation. The latter can be directly converted into electricity by solar cells placed under a semitransparent layer, or it can be harvested through a calorific flowing fluid. The aim of this paper is to introduce the concept of “hybrid road,” which is able to exploit both approaches. The innovative pavement is a multilayered structure composed by a semitransparent top layer made of glass aggregates bonded together thanks to a semitransparent resin, an electrical layer containing the solar cells, a porous asphalt layer for the circulation of the calorific fluid, and finally, a base waterproof layer. The hybrid road can generate electricity, contrast the heat-island effect, exploit the harvested energy to run a heat pump for heating purposes, or facilitate road deicing during winter. The present paper details experimental data obtained through energetic tests performed with a laboratory-size prototype of the hybrid road. The results show that the prototype is able to harvest around 55.2 W through the heat-transfer fluid. Furthermore, the heat exchange between water and asphalt has a cooling effect on the entire prototype.

References

1.
Duarte
F.
and
Ferreira
A.
, “
Energy Harvesting on Road Pavements: State of the Art
,”
Proceedings of the Institution of Civil Engineers – Energy
169
, no. 
2
(May
2016
):
79
90
, https://doi.org/10.1680/jener.15.00005.
2.
Hu
H.
,
Vizzari
D.
,
Zha
X.
, and
Roberts
R.
, “
Solar Pavements: A Critical Review
,”
Renewable and Sustainable Energy Reviews
152
(December
2021
): 111712, https://doi.org/10.1016/j.rser.2021.111712
4.
Hanley
S.
, “
China Opens 1-Kilometer Long Solar Road
,” CleanTechnica,
2017
, http://web.archive.org/web/20220907152349/https://cleantechnica.com/2017/12/30/china-opens-1-kilometer-long-solar-road/
5.
Vizzari
D.
,
Gennesseaux
E.
,
Lavaud
S.
,
Bouron
S.
, and
Chailleux
E.
, “
Pavement Energy Harvesting Technologies: A Critical Review
,”
RILEM Technical Letters
6
(August
2021
):
93
104
, https://doi.org/10.21809/rilemtechlett.2021.131
6.
Bobes-Jesus
V.
,
Pascual-Muñoz
P.
,
Castro-Fresno
D.
, and
Rordiguez-Hernandez
J.
, “
Asphalt Solar Collectors: A Literature Review
,”
Applied Energy
102
(February
2013
):
962
970
, https://doi.org/10.1016/j.apenergy.2012.08.050
7.
Pascual-Muñoz
P.
,
Castro-Fresno
D.
,
Serrano-Bravo
P.
, and
Alonso-Estébanez
A.
, “
Thermal and Hydraulic Analysis of Multilayered Asphalt Pavements as Active Solar Collectors
,”
Applied Energy
111
(November
2013
):
324
332
, https://doi.org/10.1016/j.apenergy.2013.05.013
8.
Asfour
S.
,
Bernardin
F.
,
Toussaint
E.
, and
Piau
J.-M.
, “
Hydrothermal Modeling of Porous Pavement for Its Surface De-freezing
,”
Applied Thermal Engineering
107
(August
2016
):
493
500
, https://doi.org/10.1016/j.applthermaleng.2016.06.138
9.
Le Touz
N.
,
Dumoulin
J.
, and
Piau
J.-M.
, “
Multi-physics FEM Model of Solar Hybrid Roads for Energy Harvesting Performance Evaluation in Presence of Semi-transparent or Opaque Pavement Surface Layer
,” in
International Heat Transfer Conference 16
(
Ankara, Turkey
:
International Centre for Heat and Mass Transfer
,
2018
),
1809
1816
, https://doi.org/10.1615/IHTC16.cms.023896
10.
Xiang
B.
,
Cao
X.
,
Yuan
Y.
,
Hasanuzzaman
M.
,
Zeng
C.
,
Ji
Y.
, and
Sun
L.
, “
A Novel Hybrid Energy System Combined with Solar-Road and Soil-Regenerator: Sensitivity Analysis and Optimization
,”
Renewable Energy
129
, Part A (December
2018
):
419
430
, https://doi.org/10.1016/j.renene.2018.06.027
11.
Zhu
X.
,
Yu
Y.
, and
Li
F.
, “
A Review on Thermoelectric Energy Harvesting from Asphalt Pavement: Configuration, Performance and Future
,”
Construction and Building Materials
228
(December
2019
): 116818, https://doi.org/10.1016/j.conbuildmat.2019.116818
12.
Ong
K. S.
,
Jiang
L.
, and
Lai
K. C.
, “
Thermoelectric Energy Conversion
,” in
Comprehensive Energy Systems
(
Amsterdam, The Netherlands
:
Elsevier
,
2018
),
794
815
, https://doi.org/10.1016/B978-0-12-809597-3.00433-8
13.
Hasebe
M.
,
Kamikawa
Y.
, and
Meiarashi
S.
, “
Thermoelectric Generators Using Solar Thermal Energy in Heated Road Pavement
,” in
2006 25th International Conference on Thermoelectrics
(
New York
:
Institute of Electrical and Electronics Engineers
,
2006
),
697
700
, https://doi.org/10.1109/ICT.2006.331237
14.
Datta
U.
,
Dessouky
S.
, and
Papagiannakis
A. T.
, “
Harvesting Thermoelectric Energy from Asphalt Pavements
,”
Transportation Research Record: Journal of the Transportation Research Board
2628
, no. 
1
(January
2017
):
12
22
, https://doi.org/10.3141/2628-02
15.
Bouron
S.
,
Chailleux
E.
,
Themeli
A.
,
Dumoulin
J.
, and
Ropert
C.
, “
Revêtement translucide pour la production d’énergie électrique
,”
Revue générale des routes et de l’aménagement (RGRA)
949
(
2017
):
76
79
.
16.
Standard Test Method for Effective Porosity and Effective Air Voids of Compacted Bituminous Paving Mixture Samples (Superseded)
, ASTM D7063/D7063M-11 (West Conshohocken, PA:
ASTM International
, approved June 1,
2011
), https://doi.org/10.1520/D7063_D7063M-11
17.
Brownson
J. R. S.
, “
Laws of Light
,” in
Solar Energy Conversion Systems
(
Oxford, UK
:
Academic Press
,
2014
),
41
66
, https://doi.org/10.1016/B978-0-12-397021-3.00003-X
18.
Le Touz
N.
,
Toullier
T.
, and
Dumoulin
J.
, “
Infrared Thermography Applied to the Study of Heated and Solar Pavement: From Numerical Modeling to Small Scale Laboratory Experiments
,” in
Proceedings of Thermosense: Thermal Infrared Applications XXIX
(
Bellingham, WA
:
The International Society for Optics and Photonics
,
2017
), 1021413, https://doi.org/10.1117/12.2262778
19.
Gao
Q.
,
Huang
Y.
,
Li
M.
,
Liu
Y.
, and
Yan
Y. Y.
, “
Experimental Study of Slab Solar Collection on the Hydronic System of Road
,”
Solar Energy
84
, no. 
12
(December
2010
):
2096
2102
, https://doi.org/10.1016/j.solener.2010.09.008
20.
Shaopeng
W.
,
Mingyu
C.
, and
Jizhe
Z.
, “
Laboratory Investigation into Thermal Response of Asphalt Pavements as Solar Collector by Application of Small-Scale Slabs
,”
Applied Thermal Engineering
31
, no. 
10
(July
2011
):
1582
1287
, https://doi.org/10.1016/j.applthermaleng.2011.01.028
21.
Masoumi
A. P.
,
Tajalli-Ardekani
E.
, and
Golneshan
A. A.
, “
Investigation on Performance of an Asphalt Solar Collector: CFD Analysis, Experimental Validation and Neural Network Modeling
,”
Solar Energy
207
(September
2020
):
703
719
, https://doi.org/10.1016/j.solener.2020.06.045
22.
Rekioua
D.
and
Matagne
E.
,
Optimization of Photovoltaic Power Systems: Modelization
,
Simulation and Control
(
London
:
Springer
,
2012
), https://doi.org/10.1007/978-1-4471-2403-0
23.
Hu
H.
,
Zha
X.
,
Li
Z.
, and
Lv
R.
, “
Preparation and Performance Study of Solar Pavement Panel Based on Transparent Resin-Concrete
,”
Sustainable Energy Technologies and Assessments
52
, Part B (August
2022
): 102169, https://doi.org/10.1016/j.seta.2022.102169
24.
Vizzari
D.
,
Gennesseaux
E.
,
Lavaud
S.
,
Bouron
S.
, and
Chailleux
E.
, “
Surface Dressing Treatment for Applications on Solar Roads
,” in
ISBM 2020: Proceedings of the RILEM International Symposium on Bituminous Materials
(
Cham, Switzerland
:
Springer
,
2021
),
1719
1725
, https://doi.org/10.1007/978-3-030-46455-4_218
25.
Dubey
S.
,
Sarvaiya
J. N.
, and
Seshadri
B.
, “
Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review
,”
Energy Procedia
33
(
2013
):
311
321
, https://doi.org/10.1016/j.egypro.2013.05.072
This content is only available via PDF.
You do not currently have access to this content.