Abstract

This research article investigated the optimized process parameters for decreasing the hot cracking phenomenon and improving the microhardness of ultrasonic vibratory-assisted tungsten inert gas (U-TIG) welding of Inconel 625 alloy. The study employed two approaches: response surface methodology (RSM) and RSM coupled with a genetic algorithm (RSM-GA). The objective was to analyze the impact of welding process parameters, including welding current, gas flow rate, presence or absence of ultrasonic vibration, and filler material, on the crack length and microhardness of the welded joints. Experimental tests were conducted using RSM with a full factorial central composite design matrix, enabling comprehensive parameter space exploration. Parametric mathematical models were developed based on the obtained experimental data. These models were then utilized as fitness functions within the GA to determine the global optimal solution, aiming to minimize crack length and maximize microhardness. Additionally, artificial neural network (ANN) models were developed to predict the responses and optimize the welding process. The comparison between the experimental and predicted data demonstrated the reliability of the ANN model in accurately estimating the crack length and microhardness of U-TIG welded Inconel 625 alloy joints. The developed models achieved a prediction accuracy of less than 5 % error.

References

1.
Eiselstein
H. L.
and
Tillack
D. J.
, “
The Invention and Definition of Alloy 625
,” in
Superalloys 718, 625 and Various Derivatives
, ed.
Loria
E. A.
(
Pittsburgh, PA
:
The Minerals, Metals & Materials Society
,
1991
),
1
14
.
2.
Shankar
V.
,
Valsan
M.
,
Rao
K. B. S.
, and
Mannan
S. L.
, “
Effects of Temperature and Strain Rate on Tensile Properties and Activation Energy for Dynamic Strain Aging in Alloy 625
,”
Metallurgical and Materials Transactions A
35
, no. 
10
(October
2004
):
3129
3139
, https://doi.org/10.1007/s11661-004-0057-0
3.
Dinda
G. P.
,
Dasgupta
A. K.
, and
Mazumder
J.
, “
Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability
,”
Materials Science and Engineering: A
509
, nos. 
1–2
(May
2009
):
98
104
, https://doi.org/10.1016/j.msea.2009.01.009
4.
Paul
C. P.
,
Ganesh
P.
,
Mishra
S. K.
,
Bhargava
P.
,
Negi
J.
, and
Nath
A. K.
, “
Investigating Laser Rapid Manufacturing for Inconel-625 Components
,”
Optics & Laser Technology
39
, no. 
4
(June
2007
):
800
805
, https://doi.org/10.1016/j.optlastec.2006.01.008
5.
Sims
C. T.
,
Stoloff
N. S.
, and
Hagel
W. C.
, eds.,
Superalloys II: High Temperature Materials for Aerospace and Industrial Power
(
New York
:
Wiley
,
1987
).
6.
Rombouts
M.
,
Maes
G.
,
Mertens
M.
, and
Hendrix
W.
, “
Laser Metal Deposition of Inconel 625: Microstructure and Mechanical Properties
,”
Journal of Laser Applications
24
, no. 
5
(November
2012
): 052007, https://doi.org/10.2351/1.4757717
7.
Shankar
V.
,
Rao
K. B. S.
, and
Mannan
S. L.
, “
Microstructure and Mechanical Properties of Inconel 625 Superalloy
,”
Journal of Nuclear Materials
288
, nos. 
2–3
(February
2001
):
222
232
, https://doi.org/10.1016/S0022-3115(00)00723-6
8.
Hales
S. J.
,
Domack
C. S.
, and
Taminger
K. M.
,
Electron Beam Freeform Fabrication of Dissimilar Materials: Cracking in Inconel® 625 Deposited on GRCop-84, NASA/TP–2020-5005040
(
Hampton, VA
:
NASA
,
2020
).
9.
Pearl
W. L.
,
Brush
E. G.
,
Gaul
G. G.
, and
Leistikow
S.
, “
General Corrosion of Inconel Alloy 625® in Simulated Superheat Reactor Environment
,”
Nuclear Applications
3
, no. 
7
(
1967
):
418
432
, https://doi.org/10.13182/NT67-A27840
10.
Caironi
G.
,
Gariboldi
E.
,
Silva
G.
, and
Vedani
M.
, “
Influence of Heat Treatments on the Mechanical Properties and Microstructure of a 50Cr-50Ni Niobium Containing Alloy
,”
Journal de Physique. IV
03
, no. 
C7
(November
1993
):
289
295
, https://doi.org/10.1051/jp4:1993746
11.
Cieslak
M. J.
,
Headley
T. J.
,
Romig
A. D.
, and
Kollie
T.
, “
A Melting and Solidification Study of Alloy 625
,”
Metallurgical Transactions A
19
, no. 
9
(September
1988
):
2319
2331
, https://doi.org/10.1007/BF02645056
12.
Huang
C. A.
,
Wang
T. H.
,
Lee
C. H.
, and
Han
W. C.
, “
A Study of the Heat-Affected Zone (HAZ) of an Inconel 718 Sheet Welded with Electron-Beam Welding (EBW)
,”
Materials Science and Engineering: A
398
, nos. 
1–2
(May
2005
):
275
281
, https://doi.org/10.1016/j.msea.2005.03.029
13.
Yaman
Y. M.
and
Kuşhan
M. C.
, “
Hot Cracking Susceptibilities in the Heat-Affected Zone of Electron Beam–Welded Inconel 718
,”
Journal of Materials Science Letters
17
, no. 
14
(July
1998
):
1231
1234
, https://doi.org/10.1023/A:1006514431915
14.
Naffakh
H.
,
Shamanian
M.
, and
Ashrafizadeh
F.
, “
Dissimilar Welding of AISI 310 Austenitic Stainless Steel to Nickel-Based Alloy Inconel 657
,”
Journal of Materials Processing Technology
209
, no. 
7
(April
2009
):
3628
3639
, https://doi.org/10.1016/j.jmatprotec.2008.08.019
15.
Shah Hosseini
H.
,
Shamanian
M.
, and
Kermanpur
A.
, “
Microstructural and Weldability Analysis of Inconel617/AISI 310 Stainless Steel Dissimilar Welds
,”
International Journal of Pressure Vessels and Piping
144
(August
2016
):
18
24
, https://doi.org/10.1016/j.ijpvp.2016.05.004
16.
Böllinghaus
T.
,
Herold
H.
,
Cross
C. E.
, and
Lippold
J. C.
, eds.,
Hot Cracking Phenomena in Welds II
(
Berlin, Germany
:
Springer
,
2008
).
17.
Lippold
J. C.
,
Kiser
S. D.
, and
DuPont
J. N.
,
Welding Metallurgy and Weldability of Nickel-Base Alloys
(
New York
:
Wiley
,
2011
).
18.
Adamiec
P.
,
Dziubiński
J.
,
Gruszczyk
A.
,
Makosz
P.
,
Mazur
M.
,
Mazur
W.
, and
Szymański
A.
,
Metallurgy of Welding
(
Gliwice, Poland
:
Silesian University of Technology
,
1992
).
19.
Ou
Y.
,
Lu
Q.
,
Li
C.
,
Yan
H.
,
Zhang
P.
, and
Jin
J.
, “
Effect of Vibration Frequency on Microstructure and Properties of Laser-Welded Inconel 718 Nickel-Base Superalloy
,”
Journal of Materials Engineering and Performance
30
, no. 
4
(April
2021
):
2399
2407
, https://doi.org/10.1007/s11665-020-05392-7
20.
Thavamani
R.
,
Balusamy
V.
,
Nampoothiri
J.
,
Subramanian
R.
, and
Ravi
K. R.
, “
Mitigation of Hot Cracking in Inconel 718 Superalloy by Ultrasonic Vibration during Gas Tungsten Arc Welding
,”
Journal of Alloys and Compounds
740
(April
2018
):
870
878
, https://doi.org/10.1016/j.jallcom.2017.12.295
21.
Ning
F.
,
Hu
Y.
,
Liu
Z.
,
Wang
X.
,
Li
Y.
, and
Cong
W.
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanical Characterization
,”
Journal of Manufacturing Science and Engineering
140
, no. 
6
(June
2018
): 061012, https://doi.org/10.1115/1.4039441
22.
Zhu
L.
,
Yang
Z.
,
Xin
B.
,
Wang
S.
,
Meng
G.
,
Ning
J.
, and
Xue
P.
, “
Microstructure and Mechanical Properties of Parts Formed by Ultrasonic Vibration-Assisted Laser Cladding of Inconel 718
,”
Surface and Coatings Technology
410
(March
2021
): 126964, https://doi.org/10.1016/j.surfcoat.2021.126964
23.
Sedighi
S.
,
Ostovan
F.
,
Shafiei
E.
, and
Toozandehjani
M.
, “
Microstructural Changes during Stress Relief Heat Treatment of Inconel 625–A106 Carbon Steel Joint
,”
Metallography, Microstructure, and Analysis
8
, no. 
4
(August
2019
):
495
505
, https://doi.org/10.1007/s13632-019-00562-z
24.
González Albarrán
M. A.
,
Martínez
D. I.
,
Díaz
E.
,
Díaz
J. C.
,
Guzman
I.
,
Saucedo
E.
, and
Guzman
A. M.
, “
Effect of Preweld Heat Treatment on the Microstructure of Heat-Affected Zone (HAZ) and Weldability of Inconel 939 Superalloy
,”
Journal of Materials Engineering and Performance
23
, no. 
4
(April
2014
):
1125
1130
, https://doi.org/10.1007/s11665-013-0704-y
25.
Guo
H.
,
Chaturvedi
M. C.
, and
Richards
N. L.
, “
Effect of Sulphur on Hot Ductility and Heat Affected Zone Microfissuring in Inconel 718 Welds
,”
Science and Technology of Welding and Joining
5
, no. 
6
(December
2000
):
378
384
, https://doi.org/10.1179/136217100101538443
26.
Arivarasu
M.
,
Manikandan
M.
,
Vinoth Jebaraj
A.
, and
Arivazhagan
N.
, “
The Effect of Post-Weld Heat Treatment on Microstructure and Tensile Properties of Alloy C-276 Welded Joints Fabricated by Pulsed Current Gas Tungsten Arc Welding
,”
Ciência & Tecnologia dos Materiais
29
, no. 
2
(May–August
2017
):
39
45
, https://doi.org/10.1016/j.ctmat.2017.03.001
27.
Subramanian
R.
,
Natarajan
B.
,
Kaliyaperumal
B.
, and
Chinnasamy
R.
, “
Effect of MIG Welding Process Parameters on Microstructure and Tensile Behavior of Hastelloy C276 Using Response Surface Methodology
,”
Materials Research Express
6
, no. 
6
(June
2019
): 066540, https://doi.org/10.1088/2053-1591/ab093a
28.
Giridharan
P. K.
and
Murugan
N.
, “
Optimization of Pulsed GTA Welding Process Parameters for the Welding of AISI 304L Stainless Steel Sheets
,”
The International Journal of Advanced Manufacturing Technology
40
, no. 
5
(January
2009
):
478
489
, https://doi.org/10.1007/s00170-008-1373-0
29.
Kiaee
N.
and
Aghaie-Khafri
M.
, “
Optimization of Gas Tungsten Arc Welding Process by Response Surface Methodology
,”
Materials & Design (1980-2015)
54
(February
2014
):
25
31
, https://doi.org/10.1016/j.matdes.2013.08.032
30.
Katoch
S.
,
Chauhan
S. S.
, and
Kumar
V.
, “
A Review on Genetic Algorithm: Past, Present, and Future
,”
Multimedia Tools and Applications
80
, no. 
5
(February
2021
):
8091
8126
, https://doi.org/10.1007/s11042-020-10139-6
31.
Karpagaraj
A.
,
Parthiban
K.
, and
Ponmani
S.
, “
Optimization Techniques Used in Gas Tungsten Arc Welding Process – A Review
,”
Materials Today: Proceedings
27
, Part 
3
(
2020
):
2187
2190
, https://doi.org/10.1016/j.matpr.2019.09.093
32.
Ahmad
A.
and
Alam
S.
, “
Parametric Optimization of TIG Welding Using Response Surface Methodology
,”
Materials Today: Proceedings
18
, Part 
7
(
2019
):
3071
3079
, https://doi.org/10.1016/j.matpr.2019.07.179
33.
Katherasan
D.
,
Elias
J. V.
,
Sathiya
P.
, and
Haq
A. N.
, “
Simulation and Parameter Optimization of Flux Cored Arc Welding Using Artificial Neural Network and Particle Swarm Optimization Algorithm
,”
Journal of Intelligent Manufacturing
25
, no. 
1
(February
2014
):
67
76
, https://doi.org/10.1007/s10845-012-0675-0
34.
Palanisamy
P.
,
Rajendran
I.
, and
Shanmugasundaram
S.
, “
Optimization of Machining Parameters Using Genetic Algorithm and Experimental Validation for End-Milling Operations
,”
The International Journal of Advanced Manufacturing Technology
32
, no. 
7
(April
2007
):
644
655
, https://doi.org/10.1007/s00170-005-0384-3
35.
Chandrasekhar
N.
,
Ragavendran
M.
,
Ravikumar
R.
,
Vasudevan
M.
, and
Murugan
S.
, “
Optimization of Hybrid Laser–TIG Welding of 316LN Stainless Steel Using Genetic Algorithm
,”
Materials and Manufacturing Processes
32
, no. 
10
(
2017
):
1094
1100
, https://doi.org/10.1080/10426914.2017.1317793
36.
Annamalai
D.
,
Nampoothiri
J.
,
Manikandan Rajam
P. K.
, and
Radhakrishnan
H. K.
, “
Optimization of Ultrasonic-Assisted TIG (UA-TIG) Welding Process Parameters for AA7075 Alloy Joints Using RSM-GA Approach
,”
Journal of Testing and Evaluation
51
, no. 
5
(September
2023
):
3369
3389
, https://doi.org/10.1520/JTE20220445
37.
Abere
A. E.
,
Tsegaw
A. A.
, and
Nallamothu
R. B.
, “
Process Parameters Optimization of Bobbin Tool Friction Stir Welding on Aluminum Alloy 6061-T6 Using Combined Artificial Neural Network and Genetic Algorithm
,”
Journal of the Brazilian Society of Mechanical Sciences and Engineering
44
, no. 
11
(
2022
): 566, https://doi.org/10.1007/s40430-022-03870-8
38.
Zhao
D.
,
Wang
W.
,
Ren
D.
, and
Zhao
K.
, “
Research on Ultrasonic Welding of Copper Wire Harness and Aluminum Alloy: Based on Experimental Method and GA-ANN Model
,”
Journal of Materials Research and Technology
22
(January–February
2023
):
3180
3191
, https://doi.org/10.1016/j.jmrt.2022.12.155
This content is only available via PDF.
You do not currently have access to this content.