Abstract

Over the last years, there has been a high interest in carbon nanotubes' (CNTs) applications due to their unique properties, mainly at mechanical and electrical levels. However, current synthesis processes, such as chemical vapor deposition (CVD), are highly unpredictable and inconsistent, which leads to an exhaustive trial-and-error methodology when extrapolating results. A sensitivity analysis based on computational fluid dynamics (CFD) is performed here to two distinct setups of the CVD process as a way to understand the synthesis process. Setups were computationally designed and simulated for various synthesis scenarios, where only the hydrocarbon flow and the process temperature were changed. Measuring synthesis conditions, such as concentrations and velocity, inside the tube furnace, for these scenarios allows the identification of which compound affects most each condition. Results showed that, when envisioning the process extrapolation, the synthesis conditions can be tuned via the accessed parameters.

References

1.
Oliver
,
C. R.
,
Polsen
,
E. S.
,
Meshot
,
E. R.
,
Tawfick
,
S.
,
Park
,
S. J.
,
Bedewy
,
M.
, and
Hart
,
A. J.
,
2013
, “
Statistical Analysis of Variation in Laboratory Growth of Carbon Nanotube Forests and Recommendations for Improved Consistency
,”
ACS Nano
,
7
(
4
), pp.
3565
3580
. 10.1021/nn400507y
2.
Kumar
,
M.
, and
Ando
,
Y.
,
2010
, “
Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production
,”
J. Nanosci. Nanotechnol.
,
10
(
6
), pp.
3739
3758
. 10.1166/jnn.2010.2939
3.
Matyushov
,
A.
,
2008
, “
Growth of Carbon Nanotubes Via Chemical Vapor Deposition
,”
Diam. Relat. Mater.
,
10
(
3–7
), pp.
1235
1240
. 10.1016/S0925-9635(00)00446-5
4.
Sinha
,
N.
,
Ma
,
J.
, and
Yeow
,
J. T. W.
,
2006
, “
Carbon Nanotube-Based Sensors
,”
J. Nanosci. Nanotechnol.
,
6
(
3
), pp.
573
590
. 10.1166/jnn.2006.121
5.
Moshkalyov
,
S. A.
,
Moreau
,
A. L. D.
,
Guttiérrez
,
H. R.
,
Cotta
,
M. A.
, and
Swart
,
J. W.
,
2004
, “
Carbon Nanotubes Growth by Chemical Vapor Deposition Using Thin Film Nickel Catalyst
,”
Mater. Sci. Eng. B
,
112
(
2–3
), pp.
147
153
. 10.1016/j.mseb.2004.05.038
6.
Yan
,
J. W.
,
Liew
,
K. M.
, and
He
,
L. H.
,
2012
, “
Analysis of Single-Walled Carbon Nanotubes Using the Moving Kriging Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
232
, pp.
56
67
. 10.1016/j.cma.2012.03.025
7.
Sánchez
,
A. G.
,
Lvova
,
L. D.
,
Garza
,
V. L.
,
Doval
,
R. R.
, and
Sánchez
,
M. d. L. M.
,
2012
, “
Computational Fluid Dynamics in the Carbon Nanotubes Synthesis by Chemical Vapor Deposition
,”
Mater. Res. Soc. Symp. Proc.
,
1446
, pp.
25
31
. 10.1557/opl.2012.1607
8.
Endo
,
H.
,
Kuwana
,
K.
,
Saito
,
K.
,
Qian
,
D.
,
Andrews
,
R.
, and
Grulke
,
E. A.
,
2004
, “
CFD Prediction of Carbon Nanotube Production Rate in a CVD Reactor
,”
Chem. Phys. Lett.
,
387
(
4–6
), pp.
307
311
. 10.1016/j.cplett.2004.01.124
9.
White
,
R.
, and
King
,
D.
,
2009
, “
Combined Experimental and Simulation (CFD) Analysis on Performance of a Horizontal Tube Reactor Used to Produce Carbon Nanotubes
,”
7th International Conference on CFD in the Minerals and Process Industries
,
Melbourne
,
Dec. 9–11
, pp.
1
5
.
10.
Shah
,
K. A.
, and
Tali
,
B. A.
,
2016
, “
Synthesis of Carbon Nanotubes by Catalytic Chemical Vapour Deposition: A Review on Carbon Sources, Catalysts and Substrates
,”
Mater. Sci. Semicond. Process.
,
41
, pp.
67
82
. 10.1016/j.mssp.2015.08.013
11.
Collis
,
J.
,
Hubbard
,
M. E.
, and
O’Dea
,
R. D.
,
2016
, “
Computational Modelling of Multiscale, Multiphase Fluid Mixtures With Application to Tumour Growth
,”
Comput. Methods Appl. Mech. Eng.
,
309
, pp.
554
578
. 10.1016/j.cma.2016.06.015
12.
Yang
,
K.
,
Sun
,
P.
,
Wang
,
L.
,
Xu
,
J.
, and
Zhang
,
L.
,
2016
, “
Modeling and Simulations for Fluid and Rotating Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
788
814
. 10.1016/j.cma.2016.09.020
13.
Li
,
M.
,
Xu
,
Z.
,
Li
,
Z.
,
Chen
,
Y.
,
Guo
,
J.
,
Huo
,
H.
,
Zhou
,
H.
,
Huangfu
,
H.
,
Cao
,
Z.
, and
Wang
,
H.
,
2016
, “
An Experimental and CFD Study on Gas Flow Field Distribution in the Growth Process of Multi-Walled Carbon Nanotube Arrays by Thermal Chemical Vapor Deposition
,”
Cryst. Res. Technol.
,
51
(
12
), pp.
702
707
. 10.1002/crat.201600104
14.
Gamaly
,
G.
, and
Ebbesen
,
T. W.
,
1995
, “
Mechanism of Carbon Nanotube Formation in the Arc Discharge
,”
Am. Phys. Soc.
,
52
(
3
), pp.
2083
2089
. 10.1103/physrevb.52.2083
15.
Morales
,
A.
, and
Lieber
,
C.
,
1998
, “
A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires
,”
Science
,
279
(
5348
), pp.
208
211
. 10.1126/science.279.5348.208
16.
Height
,
M. J.
,
Howard
,
J. B.
,
Tester
,
J. W.
, and
Vander Sande
,
J. B.
,
2004
, “
Flame Synthesis of Single-Walled Carbon Nanotubes
,”
Carbon
,
42
(
11
), pp.
2295
2307
. 10.1016/j.carbon.2004.05.010
17.
Tu
,
J.
,
Yeoh
,
G.
, and
Liu
,
C.
,
2018
,
Computational Fluid Dynamics: A Practical Approach
, 3rd ed.,
Elsevier B.V.
,
Oxford
.
18.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics—The Finite Volume Method
, 2nd ed.,
Pearson Education
,
Harlow, England
.
19.
Norton
,
T.
, and
Sun
,
D.-W.
,
2006
, “
Computational Fluid Dynamics (CFD)—An Effective and Efficient Design and Analysis Tool for the Food Industry: A Review
,”
Trends Food Sci. Technol.
,
17
(
11
), pp.
600
620
. 10.1016/j.tifs.2006.05.004
20.
ANSYS Inc.
,
2010
, ansys cfx 13.0—Technical Specifications, Contract Hold.
21.
Ferziger
,
J.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer,
New York
.
You do not currently have access to this content.