Abstract

In this investigation, the performance of the shell and tube heat exchanger operated with tin nanoparticles-water (SnO2-W) and silver nanoparticles-water (Ag-W) nanofluids was experimentally analyzed. SnO2-W and Ag-W nanofluids were prepared without any surface medication of nanoparticles. The effects of volume concentrations of nanoparticles on thermal conductivity, viscosity, heat transfer coefficient, fiction factor, Nusselt number, and pressure drop were analyzed. The results showed that thermal conductivity of nanofluids increased by 29% and 39% while adding 0.1 wt% of SnO2 and Ag nanoparticles, respectively, due to the unique intrinsic property of the nanoparticles. Further, the convective heat transfer coefficient was enhanced because of improvement of thermal conductivity of the two phase mixture and friction factor increased due to the increases of viscosity and density of nanofluids. Moreover, Ag nanofluid showed superior pressure drop compared to SnO2 nanofluid owing to the improvement of thermophysical properties of nanofluid.

References

1.
Said
,
Z.
,
Rahman
,
S. M. A.
,
Assad
,
M. E. H.
, and
Alami
,
A. H.
,
2019
, “
Heat Transfer Enhancement and Life Cycle Analysis of a Shell-and-Tube Heat Exchanger Using Stable CuO/Water Nanofluid
,”
Sustainable Energy Technol. Assess.
,
31
, pp.
306
317
. 10.1016/j.seta.2018.12.020
2.
Hajabdollahi
,
H.
, and
Hajabdollahi
,
Z.
,
2016
, “
Assessment of Nanoparticles in Thermoeconomic Improvement of Shell and Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
106
, pp.
827
837
. 10.1016/j.applthermaleng.2016.06.061
3.
Khan
,
Z.
, and
Khan
,
Z. A.
,
2018
, “
Experimental and Numerical Investigations of Nano-Additives Enhanced Paraffin in a Shell-and-Tube Heat Exchanger: A Comparative Study
,”
Appl. Therm. Eng.
,
143
, pp.
777
790
. 10.1016/j.applthermaleng.2018.07.141
4.
Esfahani
,
M. R.
, and
Languri
,
E. M.
,
2017
, “
Exergy Analysis of a Shell-and-Tube Heat Exchanger Using Graphene Oxide Nanofluids
,”
Exp. Therm. Fluid. Sci.
,
83
, pp.
100
106
. 10.1016/j.expthermflusci.2016.12.004
5.
Farajollahi
,
B.
,
Etemad
,
S. G.
, and
Hojjat
,
M.
,
2010
, “
Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
12
17
. 10.1016/j.ijheatmasstransfer.2009.10.019
6.
Shahrul
,
I. M.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
,
Khaleduzzaman
,
S. S.
,
Sabri
,
M. F. M.
, and
Rahman
,
M. M.
,
2014
, “
Effectiveness Study of a Shell and Tube Heat Exchanger Operated with Nanofluids at Different Mass Flow Rates
,”
Numer. Heat Transfer, Part A: Appl.
,
65
(
7
), pp.
699
713
. 10.1080/10407782.2013.846196
7.
Lotfi
,
R.
,
Rashidi
,
A. M.
, and
Amrollahi
,
A.
,
2012
, “
Experimental Study on the Heat Transfer Enhancement of MWNT-Water Nanofluid in a Shell and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
108
111
. 10.1016/j.icheatmasstransfer.2011.10.002
8.
Leong
,
K. Y.
,
Saidur
,
R.
,
Khairulmaini
,
M.
,
Michael
,
Z.
, and
Kamyar
,
A.
,
2012
, “
Heat Transfer and Entropy Analysis of Three Different Types of Heat Exchangers Operated with Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
838
843
. 10.1016/j.icheatmasstransfer.2012.04.003
9.
Shahrul
,
I. M.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
, and
Sabri
,
M. F. M.
,
2016
, “
Experimental Investigation on Al2O3–W, SiO2–W and ZnO–W Nanofluids and Their Application in a Shell and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
97
, pp.
547
558
. 10.1016/j.ijheatmasstransfer.2016.02.016
10.
Yu
,
A.
,
Ramesh
,
P.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
,
2007
, “
Graphite Nanoplatelet− Epoxy Composite Thermal Interface Materials
,”
J. Phys. Chem. C
,
111
(
21
), pp.
7565
7569
. 10.1021/jp071761s
11.
Jiang
,
H.
,
Li
,
H.
,
Zan
,
C.
,
Wang
,
F.
,
Yang
,
Q.
, and
Shi
,
L.
,
2014
, “
Temperature Dependence of the Stability and Thermal Conductivity of an oil-Based Nanofluid
,”
Thermochim. Acta
,
579
, pp.
27
30
. 10.1016/j.tca.2014.01.012
12.
Halelfadl
,
S.
,
Maré
,
T.
, and
Estellé
,
P.
,
2014
, “
Efficiency of Carbon Nanotubes Water Based Nanofluids as Coolants
,”
Exp. Therm. Fluid. Sci.
,
53
, pp.
104
110
. 10.1016/j.expthermflusci.2013.11.010
13.
Luna
,
I. Z.
,
Chowdhury
,
A. S.
,
Gafur
,
M. A.
, and
Khan
,
R. A.
,
2015
, “
Measurement of Forced Convective Heat Transfer Coefficient of low Volume Fraction CuO-PVA Nanofluids Under Laminar Flow Condition
,”
Am. J. Nanomater.
,
3
(
2
), pp.
64
67
.
14.
Barzegarian
,
R.
,
Aloueyan
,
A.
, and
Yousefi
,
T.
,
2017
, “
Thermal Performance Augmentation Using Water Based Al2O3-Gamma Nanofluid in a Horizontal Shell and Tube Heat Exchanger Under Forced Circulation
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
52
59
. 10.1016/j.icheatmasstransfer.2017.05.021
15.
Yu
,
W.
,
France
,
D. M.
,
Smith
,
D. S.
,
Singh
,
D.
,
Timofeeva
,
E. V.
, and
Routbort
,
J. L.
,
2009
, “
Heat Transfer to a Silicon Carbide/Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3606
3612
. 10.1016/j.ijheatmasstransfer.2009.02.036
16.
Timofeeva
,
E. V.
,
Yu
,
W.
,
France
,
D. M.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2011
, “
Base Fluid and Temperature Effects on the Heat Transfer Characteristics of SiC in Ethylene Glycol/H2O and H2O Nanofluids
,”
J. Appl. Phys.
,
109
(
1
), p.
014914
. 10.1063/1.3524274
You do not currently have access to this content.