Abstract

Single-wall carbon nanohorn (SWCNHs)-based nanofluids have been proven to be promising media for the direct absorption of solar radiation due to their favorable optical properties and potential low cost. Still their stability in real working conditions is an open issue because they have been studied mainly under stagnant conditions, while limited information is available on the performance of these nanofluids during circulation in real systems. In the present work, the optical behavior of SWCNH-based nanofluids has been investigated with the aim of detecting possible effects of circulation and exposure to radiation, avoiding other effects such as thermal instability. An ad hoc experimental apparatus has been realized to check the stability of the circulating fluids in situ using a novel approach based on the use of pyranometers. Three suspensions are tested, two are surfactant stabilized and one is based on preoxidized and functionalized SWCNHs. Efficiency values higher than 90% were measured for more than 65 h of circulation. The effects of fluid circulation and exposure to solar radiation have been addressed, finding that the absorption efficiency decreases during tests due to the degradation of the optical properties and the nanofluid circulation is the main responsible for such degradation.

References

1.
Minardi
,
J. E.
, and
Chuang
,
H. N.
,
1975
, “
Performance of a ‘Black’ Liquid Flat-Plate Solar Collector
,”
Sol. Energy
,
17
(
3
), pp.
179
183
. 10.1016/0038-092X(75)90057-2
2.
Arai
,
N.
,
Itaya
,
Y.
, and
Hasatani
,
M.
,
1984
, “
Development of a ‘Volume Heat-Trap’ Type Solar Collector Using a Fine-Particle Semitransparent Liquid Suspension (FPSS) as a Heat Vehicle and Heat Storage Medium Unsteady, One-Dimensional Heat Transfer in a Horizontal FPSS Layer Heated by Thermal Radiatio
,”
Sol. Energy
,
32
(
1
), pp.
49
56
. 10.1016/0038-092X(84)90048-3
3.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transf. Eng.
,
27
(
10
), pp.
3
19
. 10.1080/01457630600904593
4.
Choi
,
S. U.S.
, and
Eastman
,
J A.
,
1995
, “
IMECE
,”
International Mechanical Eengineering Congress and Exhibition
,
San Francisco, CA
,
Nov. 12–17
.
5.
Raj
,
P.
, and
Subudhi
,
S.
,
2018
, “
A Review of Studies Using Nanofluids in Flat-Plate and Direct Absorption Solar Collectors
,”
Renew. Sustain. Energy Rev.
,
84
(
C
), pp.
54
74
. 10.1016/j.rser.2017.10.012
6.
Phelan
,
P.
,
Otanicar
,
T.
,
Taylor
,
R.
, and
Tyagi
,
H.
,
2013
, “
Trends and Opportunities in Direct-Absorption Solar Thermal Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021003
. 10.1115/1.4023930
7.
Guo
,
Z.
,
2020
, “
A Review on Heat Transfer Enhancement With Nanofluids
,”
J. Enhanc. Heat Transf.
,
27
(
1
), pp.
1
70
. 10.1615/jenhheattransf.2019031575
8.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
. 10.1115/1.3197562
9.
Rasih
,
R. A.
,
Sidik
,
N. A. C.
, and
Samion
,
S.
,
2019
, “
Recent Progress on Concentrating Direct Absorption Solar Collector Using Nanofluids: A Review
,”
J. Therm. Anal. Calorim.
,
137
(
3
), pp.
903
922
. 10.1007/s10973-018-7964-6
10.
Goel
,
N.
,
Taylor
,
R. A.
, and
Otanicar
,
T.
,
2020
, “
A Review of Nanofluid-Based Direct Absorption Solar Collectors: Design Considerations and Experiments With Hybrid PV/Thermal and Direct Steam Generation Collectors
,”
Renew. Energy
,
145
, pp.
903
913
. 10.1016/j.renene.2019.06.097
11.
Gorji
,
T. B.
, and
Ranjbar
,
A. A.
,
2017
, “
A Review on Optical Properties and Application of Nanofluids in Direct Absorption Solar Collectors (DASCs)
,”
Renew. Sustain. Energy Rev.
,
72
(
C
), pp.
10
32
. 10.1016/j.rser.2017.01.015
12.
Hayat
,
T.
,
Khan
,
M.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2018
, “
On Model for Three-Dimensional Flow of Nanofluid With Heat and Mass Flux Boundary Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031003
. 10.1115/1.4038700
13.
Khullar
,
V.
,
Tyagi
,
H.
,
Hordy
,
N.
,
Otanicar
,
T. P.
,
Hewakuruppu
,
Y.
,
Modi
,
P.
, and
Taylor
,
R. A.
,
2014
, “
Harvesting Solar Thermal Energy Through Nanofluid-Based Volumetric Absorption Systems
,”
Int. J. Heat Mass Transf.
,
77
, pp.
377
384
. 10.1016/j.ijheatmasstransfer.2014.05.023
14.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
(
1
), pp.
253
265
. 10.1016/j.solener.2011.09.029
15.
Bhalla
,
V.
,
Khullar
,
V.
, and
Tyagi
,
H.
,
2018
, “
Experimental Investigation of Photo-Thermal Analysis of Blended Nanoparticles (Al2O3/Co3O4) for Direct Absorption Solar Thermal Collector
,”
Renew. Energy
,
123
, pp.
616
626
. 10.1016/j.renene.2018.01.042
16.
Jeon
,
J.
,
Park
,
S.
, and
Lee
,
B. J.
,
2016
, “
Analysis on the Performance of a Flat-Plate Volumetric Solar Collector Using Blended Plasmonic Nanofluid
,”
Sol. Energy
,
132
, pp.
247
256
. 10.1016/j.solener.2016.03.022
17.
Wang
,
L.
,
Wang
,
M.
,
Xu
,
Z.
,
Yu
,
W.
, and
Xie
,
H.
,
2020
, “
Well Oil Dispersed Au/Oxygen-Deficient TiO2 Nanofluids Towards Full Spectrum Solar Thermal Conversion
,”
Sol. Energy Mater. Sol. Cells
,
212
, p.
110575
. 10.1016/j.solmat.2020.110575
18.
Wang
,
K.
,
He
,
Y.
,
Liu
,
P.
,
Kan
,
A.
,
Zheng
,
Z.
,
Wang
,
L.
,
Xie
,
H.
, and
Yu
,
W.
,
2020
, “
Highly-Efficient Nanofluid-Based Direct Absorption Solar Collector Enhanced by Reverse-Irradiation for Medium Temperature Applications
,”
Renew. Energy
,
159
, pp.
652
662
. 10.1016/j.renene.2020.05.167
19.
Bandarra Filho
,
E. P.
,
Mendoza
,
O. S. H.
,
Beicker
,
C. L. L.
,
Menezes
,
A.
, and
Wen
,
D.
,
2014
, “
Experimental Investigation of a Silver Nanoparticle-Based Direct Absorption Solar Thermal System
,”
Energy Convers. Manag.
,
84
, pp.
261
267
. 10.1016/j.enconman.2014.04.009
20.
Jin
,
H.
,
Lin
,
G.
,
Bai
,
L.
,
Amjad
,
M.
,
Bandarra Filho
,
E. P.
, and
Wen
,
D.
,
2016
, “
Photothermal Conversion Efficiency of Nanofluids: An Experimental and Numerical Study
,”
Sol. Energy
,
139
, pp.
278
289
. 10.1016/j.solener.2016.09.021
21.
Boldoo
,
T.
,
Ham
,
J.
, and
Cho
,
H.
,
2019
, “
Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid
,”
Energies
,
12
(
19
), p.
3763
. 10.3390/en12193763
22.
Cai
,
Y.
,
Nan
,
Y.
, and
Guo
,
Z.
,
2020
, “
Enhanced Absorption of Solar Energy in a Daylighting Louver With Ni-Water Nanofluid
,”
Int. J. Heat Mass Transf.
,
158
, p.
119921
. 10.1016/j.ijheatmasstransfer.2020.119921
23.
Karami
,
M.
,
Bozorgi
,
M.
,
Delfani
,
S.
, and
Akhavan-Behabadi
,
M. A.
,
2018
, “
Empirical Correlations for Heat Transfer in a Silver Nanofluid-Based Direct Absorption Solar Collector
,”
Sustain. Energy Technol. Assessments
,
28
, pp.
14
21
. 10.1016/j.seta.2018.05.001
24.
Karami
,
M.
,
Akhavan-Bahabadi
,
M. A.
,
Delfani
,
S.
, and
Raisee
,
M.
,
2015
, “
Experimental Investigation of CuO Nanofluid-Based Direct Absorption Solar Collector for Residential Applications
,”
Renew. Sustain. Energy Rev.
,
52
(
C
), pp.
793
801
. 10.1016/j.rser.2015.07.131
25.
Delfani
,
S.
,
Karami
,
M.
, and
Akhavan-Behabadi
,
M. A.
,
2016
, “
Performance Characteristics of a Residential-Type Direct Absorption Solar Collector Using MWCNT Nanofluid
,”
Renew. Energy
,
87
, Part 1, pp.
754
764
. 10.1016/j.renene.2015.11.004
26.
Karami
,
M.
,
2019
, “
Experimental Investigation of First and Second Laws in a Direct Absorption Solar Collector Using Hybrid Fe3O4/SiO2 Nanofluid
,”
J. Therm. Anal. Calorim.
,
136
(
2
), pp.
661
671
. 10.1007/s10973-018-7624-x
27.
Kasaeian
,
A.
,
Daneshazarian
,
R.
,
Rezaei
,
R.
,
Pourfayaz
,
F.
, and
Kasaeian
,
G.
,
2017
, “
Experimental Investigation on the Thermal Behavior of Nanofluid Direct Absorption in a Trough Collector
,”
J. Clean. Prod.
,
158
, pp.
276
284
. 10.1016/j.jclepro.2017.04.131
28.
Khullar
,
V.
,
Bhalla
,
V.
, and
Tyagi
,
H.
,
2018
, “
Potential Heat Transfer Fluids (Nanofluids) for Direct Volumetric Absorption-Based Solar Thermal Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011009
. 10.1115/1.4036795
29.
Khatri
,
R.
,
Kumar
,
M.
, and
Jiyani
,
R.
,
2018
, “
An Experimental Investigation on Direct Absorption Solar Collector Using TiO2-Water Nanofluid
,”
Proceedings—2018 2nd International Conference on Green Energy and Applications, ICGEA 2018
,
Singapore
,
Mar. 24–26
.
30.
Menbari
,
A.
,
Alemrajabi
,
A. A.
, and
Rezaei
,
A.
,
2017
, “
Experimental Investigation of Thermal Performance for Direct Absorption Solar Parabolic Trough Collector (DASPTC) Based on Binary Nanofluids
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
218
227
. 10.1016/j.expthermflusci.2016.08.023
31.
Xu
,
G.
,
Chen
,
W.
,
Deng
,
S.
,
Zhang
,
X.
, and
Zhao
,
S.
,
2015
, “
Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector With Parabolic Trough Concentrator
,”
Nanomaterials
,
5
(
4
), pp.
2131
2147
. 10.3390/nano5042131
32.
Li
,
Q.
,
Zheng
,
C.
,
Mesgari
,
S.
,
Hewkuruppu
,
Y. L.
,
Hjerrild
,
N.
,
Crisostomo
,
F.
,
Rosengarten
,
G.
,
Scott
,
J. A.
, and
Taylor
,
R. A.
,
2016
, “
Experimental and Numerical Investigation of Volumetric Versus Surface Solar Absorbers for a Concentrated Solar Thermal Collector
,”
Sol. Energy
,
136
, pp.
349
364
. 10.1016/j.solener.2016.07.015
33.
Bortolato
,
M.
,
Dugaria
,
S.
,
Agresti
,
F.
,
Barison
,
S.
,
Fedele
,
L.
,
Sani
,
E.
, and
Del Col
,
D.
,
2017
, “
Investigation of a Single Wall Carbon Nanohorn-Based Nanofluid in a Full-Scale Direct Absorption Parabolic Trough Solar Collector
,”
Energy Convers. Manag.
,
150
, pp.
693
703
. 10.1016/j.enconman.2017.08.044
34.
Sani
,
E.
,
Barison
,
S.
,
Pagura
,
C.
,
Mercatelli
,
L.
,
Sansoni
,
P.
,
Fontani
,
D.
,
Jafrancesco
,
D.
, and
Francini
,
F.
,
2010
, “
Carbon Nanohorns-Based Nanofluids as Direct Sunlight Absorbers
,”
Opt. Express
,
18
(
5
), p.
5179
. 10.1364/OE.18.005179
35.
Sani
,
E.
,
Mercatelli
,
L.
,
Barison
,
S.
,
Pagura
,
C.
,
Agresti
,
F.
,
Colla
,
L.
, and
Sansoni
,
P.
,
2011
, “
Potential of Carbon Nanohorn-Based Suspensions for Solar Thermal Collectors
,”
Sol. Energy Mater. Sol. Cells
,
95
(
11
), pp.
2994
3000
. 10.1016/j.solmat.2011.06.011
36.
Gorji
,
T. B.
,
Ranjbar
,
A. A.
, and
Mirzababaei
,
S. N.
,
2015
, “
Optical Properties of Carboxyl Functionalized Carbon Nanotube Aqueous Nanofluids as Direct Solar Thermal Energy Absorbers
,”
Sol. Energy
,
119
, pp.
332
342
. 10.1016/j.solener.2015.07.012
37.
Agresti
,
F.
,
Barison
,
S.
,
Famengo
,
A.
,
Pagura
,
C.
,
Fedele
,
L.
,
Rossi
,
S.
,
Bobbo
,
S.
,
Rancan
,
M.
, and
Fabrizio
,
M.
,
2018
, “
Surface Oxidation of Single Wall Carbon Nanohorns for the Production of Surfactant Free Water-Based Colloids
,”
J. Colloid Interface Sci.
,
514
, pp.
528
533
. 10.1016/j.jcis.2017.12.058
38.
Dugaria
,
S.
,
Bortolato
,
M.
, and
Del Col
,
D.
,
2018
, “
Modelling of a Direct Absorption Solar Receiver Using Carbon Based Nanofluids Under Concentrated Solar Radiation
,”
Renew. Energy
,
128
, Part B, pp.
495
508
. 10.1016/j.renene.2017.06.029
39.
European Commitee for Standardization
,
2017
, “
Solar Energy—Solar Thermal Collectors—Test Methods
,”
Geneva
.
40.
Mercatelli
,
L.
,
Sani
,
E.
,
Giannini
,
A.
,
Di Ninni
,
P.
,
Martelli
,
F.
, and
Zaccanti
,
G.
,
2012
, “
Carbon Nanohorn-Based Nanofluids: Characterization of the Spectral Scattering Albedo
,”
Nanoscale Res. Lett.
,
7
(
1
), p.
96
. 10.1186/1556-276X-7-96
41.
Liu
,
B. Y. H.
, and
Jordan
,
R. C.
,
1960
, “
The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation
,”
Sol. Energy
,
4
(
3
), pp.
1
19
. 10.1016/0038-092X(60)90062-1
42.
Khadjavi
,
A.
,
1968
, “
Calculation of Solid Angle Subtended by Rectangular Apertures
,”
J. Opt. Soc. Am.
,
58
(
10
), p.
1417
. 10.1364/JOSA.58.001417
43.
Lequin
,
R. M.
,
2004
, “
Guide to the Expression of Uncertainty of Measurement: Point/Counterpoint [5]
.”
44.
Padovan
,
A.
, and
Del Col
,
D.
,
2010
, “
Measurement and Modeling of Solar Irradiance Components on Horizontal and Tilted Planes
,”
Sol. Energy
,
84
(
12
), pp.
2068
2084
. 10.1016/j.solener.2010.09.009
You do not currently have access to this content.