Abstract

This study presents a thermal performance comparison of various working fluids operating in a parabolic trough collector. Fluids such as gases (helium, carbon dioxide, and air), liquid sodium, and liquids (pressurized water, Therminol VP1, and Syltherm 800) are evaluated. This study also examines the efficiency enhancement obtained from the dispersion of copper nanoparticles in water, Therminol VP1, and Syltherm 800 base fluids. The optimum parameters for nanoparticle concentration, volume flowrate, and inlet temperature to obtain the maximum efficiencies for each working fluid were evaluated in this study. The thermal model used in this study was modeled after the commercially available LS-2 collector, which is designed in the engineering equation solver (EES) and validated with results found in the literature. The results of the study show that the Cu/Syltherm 800 nanofluid showed the most enhancement in thermal efficiency with 0.141%, while Cu/water and Cu/Therminol VP1 had enhancements of 0.037% and 0.088% respectively.

References

1.
Kassem
,
A.
,
Al-Haddad
,
K.
,
Komljenovic
,
D.
, and
Schiffauerova
,
A.
,
2016
, “
A Value Tree for Identification of Evaluation Criteria for Solar Thermal Power Technologies in Developing Countries
,”
Sustain. Energy Technol. Assessments
,
16
, pp.
18
32
. 10.1016/j.seta.2016.02.003
2.
Bellos
,
E.
,
Korres
,
D.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2016
, “
Design, Simulation and Optimization of a Compound Parabolic Collector
,”
Sustain. Energy Technol. Assessments
,
16
, pp.
53
63
. 10.1016/j.seta.2016.04.005
3.
Adibhatla
,
S.
, and
Kaushik
,
S. C.
,
2017
, “
Energy, Exergy, Economic and Environmental (4E) Analyses of a Conceptual Solar Aided Coal Fired 500 MWe Thermal Power Plant With Thermal Energy Storage Option
,”
Sustain. Energy Technol. Assessments
,
21
, pp.
89
99
. 10.1016/j.seta.2017.05.002
4.
Hernández-Román
,
M. á.
,
Manzano-Ramírez
,
A.
,
Pineda-Piñón
,
J.
, and
Ortega-Moody
,
J.
,
2014
, “
Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector
,”
Entropy
,
16
(
8
), pp.
4612
4625
. 10.3390/e16084612
5.
Okonkwo
,
E. C.
,
Okwose
,
F.
, and
Abbasoglu
,
S.
,
2017
, “
Techno-economic Analysis of the Potential Utilization of a Hybrid PV-Wind Turbine System for Commercial Buildings in Jordan
,”
Int. J. Renew. Energy Res.
,
7
(
2
), pp.
908
914
.
6.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2012
, “
Application of Graphene and Graphene-Based Materials in Clean Energy-Related Devices Minghui
,”
Arch. Thermodyn.
,
33
(
4
), pp.
23
40
. 10.2478/v10173-012-0026-8
7.
Okonkwo
,
E. C.
,
Adun
,
H.
,
Babatunde
,
A. A.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2020
, “
Entropy Generation Minimization in a Parabolic Trough Collector Operating With SiO2—Water Nanofluids Using Genetic Algorithm and Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031007
. 10.1115/1.4044755
8.
Okonkwo
,
E. C.
,
Wole-osho
,
I.
,
Kavaz
,
D.
,
Abid
,
M.
, and
Al-ansari
,
T.
,
2020
, “
Thermodynamic Evaluation and Optimization of a Flat Plate Collector Operating With Alumina and Iron Mono and Hybrid Nanofluids
,”
Sustain. Energy Technol. Assessments
,
37
, p.
100636
. 10.1016/j.seta.2020.100636
9.
Wole-osho
,
I.
,
Adun
,
H.
,
Adedeji
,
M.
,
Okonkwo
,
E. C.
,
Kavaz
,
D.
, and
Dagbasi
,
M.
,
2020
, “
Effect of Hybrid Nanofluids Mixture Ratio on the Performance of a Photovoltaic Thermal Collector
,”
Int. J. Energy Res.
,
44
(
11
), pp.
9064
9081
. 10.1002/er.5619
10.
Pavlovic
,
S.
,
Bellos
,
E.
, and
Loni
,
R.
,
2018
, “
Exergetic Investigation of a Solar Dish Collector With Smooth and Corrugated Spiral Absorber Operating With Various Nanofluids
,”
J. Clean. Prod.
,
174
, pp.
1147
1160
. 10.1016/j.jclepro.2017.11.004
11.
Singh
,
T.
,
Hussien
,
M. A. A.
,
Al-Ansari
,
T.
,
Saoud
,
K.
, and
McKay
,
G.
,
2018
, “
Critical Review of Solar Thermal Resources in GCC and Application of Nanofluids for Development of Efficient and Cost Effective CSP Technologies
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
708
719
. 10.1016/j.rser.2018.03.050
12.
Ali
,
H. M.
,
2020
,
Hybrid Nanofluids for Convection Heat Transfer
, Vol.
1
,
Academic Press, Elsevier
,
London, UK
.
13.
Ali
,
H. M.
,
2020
, “
Recent Advancements in PV Cooling and Efficiency Enhancement Integrating Phase Change Materials Based Systems—A Comprehensive Review
,”
Sol. Energy
,
197
(November 2019), pp.
163
198
. 10.1016/j.solener.2019.11.075
14.
Khalid
,
S. U.
,
Babar
,
H.
,
Ali
,
H. M.
,
Janjua
,
M. M.
, and
Ali
,
M. A.
,
2020
, “
Heat Pipes: Progress in Thermal Performance Enhancement for Microelectronics
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09820-7s
15.
Sriharan
,
G.
,
Harikrishnan
,
S.
, and
Ali
,
H. M.
,
2021
, “
Experimental Investigation on the Effectiveness of MHTHS Using Different Metal Oxide-Based Nanofluids
,”
J. Therm. Anal. Calorim.
,
143
, pp.
1251
1260
. 10.1007/s10973-020-09779-5
16.
Tariq
,
H. A.
,
Anwar
,
M.
,
Malik
,
A.
, and
Ali
,
H. M.
,
2020
, “
Hydro-Thermal Performance of Normal-Channel Facile Heat Sink Using TiO2-H2O Mixture (Rutile–Anatase) Nanofluids for Microprocessor Cooling
,”
J. Therm. Anal. Calorim.
, (0123456789). 10.1007/s10973-020-09838-x
17.
Ghaneifar
,
M.
,
Raisi
,
A.
,
Ali
,
H. M.
, and
Talebizadehsardari
,
P.
,
2020
, “
Mixed Convection Heat Transfer of AL2O3 Nanofluid in a Horizontal Channel Subjected With Two Heat Sources
,”
J. Therm. Anal. Calorim.
, (0123456789). 10.1007/s10973-020-09887-2
18.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Thermal Analysis of Parabolic Trough Collector Operating With Mono and Hybrid Nanofluids
,”
Sustain. Energy Technol. Assessments
,
26
, pp.
105
115
. 10.1016/j.seta.2017.10.005
19.
Akbarzadeh
,
S.
, and
Valipour
,
M. S.
,
2018
, “
Heat Transfer Enhancement in Parabolic Trough Collectors: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
92
(May), pp.
198
218
. 10.1016/j.rser.2018.04.093
20.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2016
, “
Heat Transfer and Entropy Generation in a Parabolic Trough Receiver With Wall-Detached Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
99
, pp.
238
257
. 10.1016/j.ijthermalsci.2015.08.015
21.
Fuqiang
,
W.
,
Zhexiang
,
T.
,
Xiangtao
,
G.
,
Jianyu
,
T.
,
Huaizhi
,
H.
, and
Bingxi
,
L.
,
2016
, “
Heat Transfer Performance Enhancement and Thermal Strain Restrain of Tube Receiver for Parabolic Trough Solar Collector by Using Asymmetric Outward Convex Corrugated Tube
,”
Energy
,
114
, pp.
275
292
. 10.1016/j.energy.2016.08.013
22.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Multi-criteria Evaluation of Parabolic Trough Collector With Internally Finned Absorbers
,”
Appl. Energy
,
205
(June), pp.
540
561
. 10.1016/j.apenergy.2017.07.141
23.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2013
, “
Heat Transfer Enhancement in a Parabolic Trough Receiver Using Wall Detached Twisted Tape Inserts
,”
Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
.
24.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2019
, “
Comparative Study of Heat Transfer Enhancement in Parabolic Trough Collector Based on Modified Absorber Geometry
,”
J. Energy Eng. ASCE
,
145
(
3
), pp.
1
16
. 10.1061/(ASCE)EY.1943-7897.0000602
25.
Ouagued
,
M.
,
Khellaf
,
A.
, and
Loukarfi
,
L.
,
2013
, “
Estimation of the Temperature, Heat Gain and Heat Loss by Solar Parabolic Trough Collector Under Algerian Climate Using Different Thermal Oils
,”
Energy Convers. Manag.
,
75
, pp.
191
201
. 10.1016/j.enconman.2013.06.011
26.
Moya
,
E. Z.
,
2016
,
“Innovative Working Fluids for Parabolic Trough Collectors,” Advances in Concentrating Solar Thermal Research and Technology
, 1st ed.,
Elsevier Ltd.
,
Oxford, UK
, pp.
75
106
.
27.
Montes
,
M. J.
,
Abánades
,
A.
, and
Martínez-Val
,
J. M.
,
2010
, “
Thermofluid dynamic Model and Comparative Analysis of Parabolic Trough Collectors Using Oil, Water/Steam, or Molten Salt as Heat Transfer Fluids
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
0210011
. 10.1115/1.4001399
28.
Valenzuela
,
L.
,
Zarza
,
E.
,
Berenguel
,
M.
, and
Camacho
,
E.
,
2005
, “
Control Concepts for Direct Steam Generation in Parabolic Troughs
,”
Sol. Energy
,
78
(
2
), pp.
301
311
. 10.1016/j.solener.2004.05.008
29.
Muñoz-Anton
,
J.
,
Biencinto
,
M.
,
Zarza
,
E.
, and
Díez
,
L. E.
,
2014
, “
Theoretical Basis and Experimental Facility for Parabolic Trough Collectors at High Temperature Using Gas as Heat Transfer Fluid
,”
Appl. Energy
,
135
, pp.
373
381
. 10.1016/j.apenergy.2014.08.099
30.
Biencinto
,
M.
,
González
,
L.
,
Zarza
,
E.
,
Díez
,
L. E.
, and
Muñoz-Antón
,
J.
,
2014
, “
Performance Model and Annual Yield Comparison of Parabolic-Trough Solar Thermal Power Plants With Either Nitrogen or Synthetic Oil as Heat Transfer Fluid
,”
Energy Convers. Manag.
,
87
, pp.
238
249
. 10.1016/j.enconman.2014.07.017
31.
Islam
,
M. K.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2015
, “
Modelling and Analysis of the Effect of Different Parameters on a Parabolic-Trough Concentrating Solar System
,”
RSC Adv.
,
5
(
46
), pp.
36540
36546
. 10.1039/C4RA12919A
32.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Daniil
,
I.
,
2016
, “
The Use of Gas Working Fluids in Parabolic Trough Collectors—An Energetic and Exergetic Analysis
,”
Appl. Therm. Eng.
,
109
, pp.
1
14
. 10.1016/j.applthermaleng.2016.08.043
33.
Goods
,
S. H.
, and
Bradshaw
,
R. W.
,
2004
, “
Corrosion of Stainless Steels and Carbon Steel by Molten Mixtures of Commercial Nitrate Salts
,”
J. Mater. Eng. Perform.
,
13
(
1
), pp.
78
87
. 10.1361/10599490417542
34.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
. 10.1016/j.applthermaleng.2016.11.201
35.
Okonkwo
,
E. C.
,
Abid
,
M.
,
Essien
,
E. A.
,
Kavaz
,
D.
, and
Ratlamwala
,
T. A. H.
,
2019
, “
Olive Leaf-Synthesized Nanofluids for Solar Parabolic Trough Collector—Thermal Performance Evaluation
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041009
. 10.1115/1.4043820
36.
Okonkwo
,
E. C.
,
Wole-Osho
,
I.
,
Almanassra
,
I. W.
,
Abdullatif
,
Y. M.
, and
Al-Ansari
,
T.
,
2020
, “
An Updated Review of Nanofluids in Various Heat Transfer Devices
,”
J. Therm. Anal. Calorim
https://doi.org/10.1007/s10973-020-09760-2 An.
37.
Singh
,
T.
,
Ali
,
M.
,
Hussien
,
A.
,
Al-ansari
,
T.
,
Saoud
,
K.
, and
Mckay
,
G.
,
2018
, “
Critical Review of Solar Thermal Resources in GCC and Application of Nanofluids for Development of Efficient and Cost Effective CSP Technologies
,”
91
(June 2017), pp.
708
719
. 10.1016/j.rser.2018.03.050
38.
Sharma
,
K.
, and
K
,
L.
,
2014
, “
Nanofluid Based Concentrating Parabolic Solar Collector (NBCPSC): A New Alternative
,”
Int. J. Res. Mech. Eng. Technol.
,
4
(
2
), pp.
146
152
.
39.
Kasaeian
,
A.
,
Daviran
,
S.
,
Azarian
,
R. D.
, and
Rashidi
,
A.
,
2015
, “
Performance Evaluation and Nanofluid Using Capability Study of a Solar Parabolic Trough Collector
,”
Energy Convers. Manag.
,
89
, pp.
368
375
. 10.1016/j.enconman.2014.09.056
40.
Karami
,
M.
,
Akhavan-Bahabadi
,
M. A.
,
Delfani
,
S.
, and
Raisee Dehkordi
,
M.
,
2015
, “
Experimental Investigation of CuO Nanofluid-Based Direct Absorption Solar Collector for Residential Applications
,”
Renew. Sustain. Energy Rev.
,
52
, pp.
793
801
. 10.1016/j.rser.2015.07.131
41.
Coccia
,
G.
,
Di Nicola
,
G.
,
Colla
,
L.
,
Fedele
,
L.
, and
Scattolini
,
M.
,
2016
, “
Adoption of Nanofluids in Low-Enthalpy Parabolic Trough Solar Collectors: Numerical Simulation of the Yearly Yield
,”
Energy Convers. Manag.
,
118
, pp.
306
319
. 10.1016/j.enconman.2016.04.013
42.
Sekhar
,
T. V. R.
,
Prakash
,
R.
,
Nandan
,
G.
, and
Muthuraman
,
M.
,
2018
, “
Performance Enhancement of a Renewable Thermal Energy Collector Using Metallic Oxide Nanofluids
,”
Micro Nano Lett.
,
13
(
2
), pp.
248
251
. 10.1049/mnl.2017.0410
43.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
0510091
. 10.1115/1.4040076
44.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Enhancing the Performance of Parabolic Trough Collectors Using Nanofluids and Turbulators
,”
Renew. Sustain. Energy Rev.
,
91
(January), pp.
358
375
. 10.1016/j.rser.2018.03.091
45.
Basbous
,
N.
,
Taqi
,
M.
, and
Janan
,
M. A.
,
2017
, “
Thermal Performances Analysis of a Parabolic Trough Solar Collector Using Different Nanofluids
,”
Proceedings of 2016 International Renewable and Sustainable Energy Conference. IRSEC 2016
,
Marrakech, Morocco
,
Nov. 14–17
.
46.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
, pp.
393
413
. 10.1016/j.apenergy.2017.02.064
47.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Thermal, Hydraulic and Exergetic Evaluation of a Parabolic Trough Collector Operating with Thermal Oil and Molten Salt Based Nanofluids
,”
Energy Convers. Manag.
,
156
(July 2017), pp.
388
402
. 10.1016/j.enconman.2017.11.051
48.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2019
, “
Thermal Efficiency Enhancement of Nanofluid-Based Parabolic Trough Collectors
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
597
608
. 10.1007/s10973-018-7056-7
49.
Hatami
,
M.
,
Geng
,
J.
, and
Jing
,
D.
,
2018
, “
Enhanced Efficiency in Concentrated Parabolic Solar Collector (CPSC) With a Porous Absorber Tube Filled With Metal Nanoparticle Suspension
,”
Green Energy Environ.
,
3
(
2
), pp.
129
137
. 10.1016/j.gee.2017.12.002
50.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
R. A.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
,
est results: SEGS LS-2 solar collector.
, Vol.
96
,
Sandia National Lab.
,
Albuquerque, NM
, p.
140
.
51.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Effects of Synthetic Oil Nanofluids and Absorber Geometries on the Exergetic Performance of the Parabolic Trough Collector
,”
Int. J. Energy Res.
,
42
(
11
), pp.
3559
3574
. 10.1002/er.4099
52.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2015
, “
A Novel Parabolic Trough Solar Collector Model—Validation With Experimental Data and Comparison to Engineering Equation Solver (EES)
,”
Energy Convers. Manag.
,
106
, pp.
268
281
. 10.1016/j.enconman.2015.09.045
53.
Duffie
,
J.
, and
Beckman
,
W.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
Wiley
,
Hoboken, NJ
.
54.
Elmohlawy
,
A. E.
,
Kazanjan
,
B. I.
, and
Ochkov
,
V. F.
,
2018
, “
Modeling and Performance Prediction of Solar Parabolic Trough Collector for Hybrid Thermal Power Generation Plant Under Different Weather Conditions
,”
AIP Conference Proceedings
,
2047
(
1
), pp.
020002
.
55.
Kalogirou
,
S. A.
,
2014
,
Solar Energy Engineering: Processes and Systems: Second Edition
,
Elsevier
,
Amsterdam, The Netherlands
.
56.
Eastman Chemical Company
,
2020
,
Therminol VP-1 Technical Bulletin TF9141
.
57.
Straub
,
J.
,
1985
, “
NBS/NRC Steam Tables. Von L. Haar, J. S. Gallagher Und G. S. Kell. Hemisphere Publishing Corp., Washington–New York–London 1984. 1. Aufl., XII, 320 S., Geb., $ 34.50
,”
Chem. Ing. Tech.
,
57
(
9
), p.
812
. 10.1002/cite.330570931
58.
Dow Oil and Gas
,
1997
,
Syltherm 800 Heat Transfer Fluid
.
59.
Fink
,
J. K.
, and
Leibowitz
,
L.
,
1995
,
Thermodynamic and Transport Properties of Sodium Liquid and Vapor
,
ANL/RE-95/2
,
Chicago, IL
.
60.
McCarty
,
R. D.
, and
D
,
A. V.
, “A New Wide Range Equation of State for Helium. In: Fast R.W. (Eds) Advances in Cryogenic Engineering,”
Fast R.W. Adv. Cryog. Eng. Adv. Cryog. Eng.
,
35
, pp.
1465
1475
, vol 35.
Springer
,
Boston, MA
.
61.
Wagner
,
W.
, and
Span
,
R.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem., Ref.
,
25
(
6
), p.
1509
. 10.1063/1.555991
62.
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Penoncello
,
S.
, and
Friend
,
D.
,
2000
, “
Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000K at Pressures to 2000MPa
,”
J. Phys. Chem. Ref.
,
29
(
3
), p.
331
. 10.1063/1.1285884
63.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
,
1970
,
Thermal Conductivity: Metallic Elements and Alloys
,
IFI/Plenum
,
New York
.
64.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow.Pdf
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
65.
Lorenzin
,
N.
, and
Abánades
,
A.
,
2016
, “
A Review on the Application of Liquid Metals as Heat Transfer Fluid in Concentrated Solar Power Technologies
,”
Int. J. Hydrogen Energy
,
41
(
17
), pp.
6990
6995
. 10.1016/j.ijhydene.2016.01.030
66.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), p.
151
. 10.1115/1.1532008
67.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transf.
,
78
(
2014
), pp.
64
75
. 10.1016/j.ijheatmasstransfer.2014.06.051
68.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transf.
,
54
(
19–20
), pp.
4410
4428
. 10.1016/j.ijheatmasstransfer.2011.04.048
69.
Bruggeman
,
V. D. A. G.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen
,”
Ann. Phys.
,
5
(
24
), pp.
636
664
. 10.1002/andp.19354160705
70.
Raja
,
R. A. A.
,
Sunil
,
J.
,
Hamilton
,
M.
, and
Davis
,
J.
,
2018
, “
Estimation of Thermal Conductivity of Nanofluids Using Theoretical Correlations
,”
Int. J. Appl. Eng. Res.
,
13
(
10
), pp.
7932
7936
.
71.
Akilu
,
S.
,
Sharma
,
K. V.
,
Baheta
,
A. T.
, and
Mamat
,
R.
,
2016
, “
A Review of Thermophysical Properties of Water Based Composite Nanofluids
,”
Renew. Sustain. Energy Rev.
,
66
, pp.
654
678
. 10.1016/j.rser.2016.08.036
72.
Hussein
,
A. M.
,
Bakar
,
R. A.
,
Kadirgama
,
K.
, and
Sharma
,
K. V.
,
2013
, “
Experimental Measurements of Nanofluids Thermal Properties
,”
Int. J. Automot. Mech. Eng.
,
7
(November 2015), pp.
850
863
. 10.15282/ijame.7.2012.5.0070
73.
Solutia
,
2014
, Therminol VP-1.
74.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
A Detailed Exergetic Analysis of Parabolic Trough Collectors
,”
Energy Convers. Manag.
,
149
, pp.
275
292
. 10.1016/j.enconman.2017.07.035
75.
Forristall
,
R.
,
2003
,
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,
NREL
,
Golden, CO
.
76.
Sirjani
,
R.
, and
Okonkwo
,
E. C.
,
2016
, “
A New Wind Power Model Using the Lightning Search Algorithm
,”
Proceedings of 13th HONET-ICT International Symposium on Smart MicroGrids for Sustainable Energy Sources Enabled by Photonics and IoT Sensors, HONET-ICT 2016
,
IEEE explore, Girne
,
Oct. 13–14
.
77.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Statistics and Computing
,
4
, pp.
65
85
.
You do not currently have access to this content.