Abstract

Heat transfer characteristics around an elliptic heated tube immersed in fluidized bed were studied experimentally. Experiments were carried out under uniform heat flux condition, with air as a fluidizing gas and pulverized coal as a bed material of Geldart D. An elliptic tube was heated by using a cartridge heater of 16 mm outer diameter (OD) and 200 mm length. The heated tube had a total surface area of As ≈ 0.015 m2 and a length of 200 mm. The local as well as average heat transfer coefficients were calculated at different superficial air velocities, particle sizes of 2, 4, and 6 mm, and a static bed height of 250 mm. Various values of fluidization number, Usup/Umf, based on hydraulic diameter of the heated tube are utilized in the experiments which are ranged from 1 to 1.4. The results showed that the minimum fluidization velocity increased with the increase in bed particles diameter. The local Nusselt number was quasi-uniform and having a maximum value at the sides of the heated tube and minimum at the stagnation, θ = 0 deg, and top, θ = 180 deg, of the tube. The local and average Nusselt numbers increase with the increase of the fluidization velocity and decrease in particle diameter. A correlation equation for the average Nusselt number with the fluidization number and tube to particle diameter ratio is deduced.

References

1.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
444
469
.
2.
Moawed
,
M.
,
2011
, “
Experimental Study of Forced Convection From Helical Coiled Tubes With Different Parameters
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1150
1156
.
3.
Khan
,
M. S.
,
Abid
,
M.
,
Ali
,
H. M.
,
Amber
,
K. P.
,
Bashir
,
M. A.
, and
Javed
,
S.
,
2019
, “
Comparative Performance Assessment of Solar Dish Assisted s-CO2 Brayton Cycle Using Nanofluids
,”
Appl. Therm. Eng.
,
148
, pp.
295
306
.
4.
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2014
, “
Enhanced Heat Transfer and Friction Factor of MWCNT–Fe3O4/Water Hybrid Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
73
83
.
5.
Altohamy
,
A. A.
,
Abd Rabbo
,
M. F.
,
Sakr
,
R. Y.
, and
Attia
,
A. A. A.
,
2015
, “
Effect of Water Based Al2O3 Nanoparticle PCM on Cool Storage Performance
,”
Appl. Therm. Eng.
,
84
, pp.
331
338
.
6.
Naphon
,
P.
, and
Suchana
,
T.
,
2011
, “
Heat Transfer Enhancement and Pressure Drop of the Horizontal Concentric Tube With Twisted Wires Brush Inserts
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
236
241
.
7.
Dechsiri
,
C.
,
2004
,
Particle Transport in Fluidized Beds: Experiments and Stochastic Models
,
University of Groningen
,
Groningen
.
8.
Park
,
J. M.
,
Kim
,
O. J.
,
Kim
,
S. J.
, and
Shin
,
Y.-C.
,
2015
, “
Heat Transfer Characteristics of Circular and Elliptic Cylinders in Cross Flow
,”
Adv. Mech. Eng.
,
7
(
11
), pp.
1
8
.
9.
El Gharbi
,
N.
,
Kheiri
,
A.
,
El Ganaoui
,
M.
, and
Blanchard
,
R.
,
2015
, “
Numerical Optimization of Heat Exchangers With Circular and Non-Circular Shapes
,”
Case Studies Therm. Eng.
,
6
, pp.
194
203
.
10.
Berbish
,
N. S.
,
2011
, “
Heat Transfer and Flow Behavior Around Four Staggered Elliptic Cylinders in Cross Flow
,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
287
300
.
11.
Veerraju
,
C.
, and
Gopal
,
M. R.
,
2009
, “
Heat and Mass Transfer Studies on Elliptical Metal Hydride Tubes and Tube Banks
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4340
4350
.
12.
Ibrahim
,
T. A.
, and
Gomaa
,
A.
,
2009
, “
Thermal Performance Criteria of Elliptic Tube Bundle in Crossflow
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2148
2158
.
13.
Rasouli
,
S.
, and
Golriz
,
M. R.
,
2009
, “
Effect of Fins on Heat Transfer of Horizontal Immersed Tube in Bubbling Fluidized Beds
,”
Proceedings of the World Congress on Engineering
, Vol. II,
WCE
,
London, UK
,
July 1–3
, pp.
978
988
.
14.
Burr
,
M. M.
,
1998
, “
Investigation of Instantaneous Hydrodynamics and Heat Transfer to a Horizontal Tube Immersed in a High-Temperature Gas–Solid Fluidized Bed of Large Particles
,”
Ph.D. thesis
,
Oregon State University
.
15.
Khan
,
T.
, and
Turton
,
R.
,
1992
, “
The Measurement of Instantaneous Heat Transfer Coefficients Around the Circumference of a Tube Immersed in a High Temperature Fluidized Bed
,”
Int. J. Heat Mass Transfer
,
35
(
12
), pp.
3397
3406
.
16.
Kurosaki
,
Y.
,
Ishiguro
,
H.
, and
Takhashi
,
K.
,
1988
, “
Fluidization and Heat-Transfer Characteristics Around a Horizontal Heated Circular Cylinder Immersed in a Gas Fluidized Bed
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
349
358
.
17.
Decker
,
N.
, and
Glicksman
,
L. R.
,
1983
, “
Heat Transfer in Large Particle Fluidized Beds
,”
Int. J. Heat Mass Transfer
,
26
(
9
), pp.
1307
1320
.
18.
Zhang
,
H.
,
Degrève
,
J.
,
Baeyens
,
J.
, and
Dewi
,
R.
,
2014
, “
Wall-to-Bed Heat Transfer at Minimum Gas–Solid Fluidization
,”
J. Powder Technol.
, Article ID: 163469, p.
8
.
19.
Stenberg
,
V.
,
Sköldberg
,
V.
,
Öhrby
,
L.
, and
Rydén
,
M.
,
2019
, “
Evaluation of Bed-to-Tube Surface Heat Transfer Coefficient for a Horizontal Tube in Bubbling Fluidized Bed at High Temperature
,”
Powder Technol.
,
352
, pp.
488
500
.
20.
Grewal
,
N. S.
, and
Saxena
,
S. C.
,
1980
, “
Heat Transfer Coefficient Between a Horizontal Tube and a Gas-Solid Fluidized Bed
,”
Int. J. Heat Mass Transfer
,
23
(
11
), pp.
1505
1519
.
21.
Gel'perin
,
N. I.
,
Ainshtein
,
V. G.
, and
Zaikovskii
,
A. V.
,
1966
, “
Variation of Heat-Transfer Intensity Around the Perimeter of a Horizontal Tube in a Fluidized Bed
,”
Inzhenerno-Fizieheskii Zhurnal
,
10
(
6
), pp.
799
802
.
Moscow
.
22.
Saxena
,
S. C.
, and
Vadive
,
R.
,
1989
, “
Heat Transfer and Hydrodynamic Studies in Gas-Fluidized Beds
,”
Energy
,
14
(
6
), pp.
353
362
.
23.
Catipovic
,
N. M.
,
1979
, “
Heat Transfer to Horizontal Tubes in Fluidized Beds, Experiment and Theory
,”
Ph.D. thesis
,
Oregon State University
.
24.
Bansal
,
R. K.
,
1978
, “
Heat Transfer Studies From Single Cylinder and Tube Bundle in Fluidized Bed
,”
Ph.D. thesis
,
Mechanical Engineering, Faculty of the Division of Graduate Studies, Georgia Institute of Technology
.
25.
Zabrodsky
,
S. S.
,
1973
, “
Compound Heat Exchange Between a High Temperature Gas-Fluidized Bed and a Solid Surface
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
241
248
.
26.
Shakhova
,
N. A.
, and
Zhelonkin
,
V. G.
,
1966
, “
Investigation of Heat Transfer Between a Surface and a Fluidized Bed in Drying Processes
,”
Inzh.-Fiz. Zh.
,
11
(
2
), pp.
154
160
.
27.
Baskakov
,
A. P.
, and
Berg
,
B. V.
,
1966
, “
Heat Transfer Between a Fluidized Bed and Immersed Cylinder
,”
Inzh.-Fiz. Zh.
,
10
(
6
), pp.
738
743
.
28.
Natale
,
F. D.
,
Lancia
,
A.
, and
Nigro
,
R.
,
2007
, “
Surface-to-Bed Heat Transfer in Fluidised Beds: Effect of Surface Shape
,”
Powder Technol.
,
174
(
3
), pp.
75
81
.
29.
Dong
,
N. H.
,
Armstrong
,
L. M.
,
Gu
,
S.
, and
Luo
,
K. H.
,
2013
, “
Effect of Tube Shape on the Hydrodynamics and Tube-to-Bed Heat Transfer in Fluidized Beds
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
472
479
.
30.
Taofeeq
,
H.
, and
Al-Dahhan
,
M.
,
2019
, “
Investigation of the Effect of Vertical Immersed Tube Diameter on Heat Transfer in a Gas-Solid Fluidized Bed
,”
Int. J. Therm. Sci.
,
135
, pp.
546
558
.
31.
Abid
,
B. A.
,
Ali
,
J. M.
, and
Alzubaidi
,
A. A.
,
2011
, “
Heat Transfer in Gas–Solid Fluidized Bed With Various Heater Inclinations
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2228
2233
.
32.
Tawfik
,
M. H. M.
,
Diab
,
M. R.
, and
Abdelmotalib
,
H. M.
,
2019
, “
An Experimental Investigation of Wall-Bed Heat Transfer and Flow Characteristics in a Swirling Fluidized Bed Reactor
,”
Appl. Therm. Eng.
,
155
, pp.
501
507
.
33.
Molerus
,
O.
,
Burschka
,
A.
, and
Dietz
,
S.
,
1995
, “
Particle Migration at Solid Surfaces and Heat Transfer in Bubbling Fluidized Beds-I. Particle Migration Measurement Systems
,”
Chem. Eng. Sci.
,
50
(
5
), pp.
871
877
.
34.
Molerus
,
O.
,
Burschka
,
A.
, and
Dietz
,
S.
,
1995
, “
Particle Migration at Solid Surfaces and Heat Transfer in Bubbling Fluidized Beds-II. Prediction of Heat Transfer in Bubbling Fluidized Beds
,”
Chem. Eng. Sci.
,
50
(
5
), pp.
879
885
.
35.
Cai
,
R.
,
Zhang
,
M.
,
Ge
,
R.
,
Zhang
,
X.
,
Cai
,
J.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Yang
,
H.
, and
Lyu
,
J.
,
2019
, “
Experimental Study on Local Heat Transfer and Hydrodynamics With Single Tube and Tube Bundles in an External Heat Exchanger
,”
Appl. Therm. Eng.
,
149
, pp.
924
938
.
36.
Tan
,
Z.
,
Guo
,
Z.
,
Yang
,
J.
, and
Wang
,
Q.
,
2019
, “
Numerical Investigation of Heat Transfer for Elliptical Tube in Granular Flow Using DEM
,”
Energy Procedia
,
158
, pp.
5504
5509
.
37.
Geldart
,
D.
,
1973
, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(
5
), pp.
285
292
.
38.
Saxena
,
S. C.
, and
Rao
,
N. S.
,
1989
, “
Fluidization Characteristics of Gas-Fluidized Beds: Air and Glass Bead System
,”
Energy
,
14
(
12
), pp.
811
826
.
39.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
40.
Shaul
,
S.
,
Rabinovich
,
E.
, and
Kalman
,
H.
,
2012
, “
Generalized Flow Regime Diagram of Fluidized Beds Based on the Height to Bed Diameter Ratio
,”
Powder Technol.
,
228
, pp.
264
271
.
41.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
A Generalized Method for Predicting the Minimum Fluidization Velocity
,”
AIChE J.
,
12
(
3
), pp.
610
612
.
42.
Bi
,
H. T.
, and
Grace
,
J. R.
,
1995
, “
Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport
,”
Int. J. Multiphase Flow
,
21
(
6
), pp.
1229
1236
.
43.
Vogtenhuber
,
H.
,
Pernsteiner
,
D.
, and
Hofmann
,
R.
,
2019
, “
Experimental and Numerical Investigations on Heat Transfer of Bare Tubes in a Bubbling Fluidized Bed With Respect to Better Heat Integration in Temperature Swing Adsorption Systems
,”
Energies
,
12
(
2646
).
44.
Goshayeshi
,
A.
,
1989
, “
Experimental Studies of Heat Transfer With an Array of Horizontal Tubes Immersed in a High-Temperature Fluidized Bed
,”
Ph.D. thesis
,
Mechanical Engineering
.
45.
Zabrodsky
,
S. S.
,
Epanov
,
Y. G.
,
Ggalershtein
,
D. M.
,
Saxena
,
S. C.
, and
Kolar
,
A. K.
,
1981
, “
Heat Transfer in a Large-Particle Fluidized Bed With Immersed In-Line and Staggered Bundles of Horizontal Smooth Tubes
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
571
579
.
46.
Chandran
,
R.
,
Chen
,
J. C.
, and
Staub
,
F. W.
,
1980
, “
Local Heat Transfer Coefficients Around Horizontal Tubes in Fluidized Beds
,”
AIChE J.
,
102
(
2
), pp.
152
157
.
47.
Grewal
,
N. S.
,
1979
, “
Experimental and Theoretical Investigations of Heat Transfer Between a Gas Solid Fluidized Bed and Immersed Tubes
,”
Ph.D. thesis
,
University of Illinois at Chicago Circle
.
48.
Chen
,
J. C.
,
2003
, “Heat Transfer,”
Handbook of Fluidization and Fluid-Particle Systems
,”
W. C.
Yang
, eds.,
Lehigh University
,
Bethlehem, PA
,
Ch. 10
, pp.
252
281
.
49.
Olsson
,
S. E.
, and
Almstedt
,
A. E.
,
1995
, “
Local Instantaneous and Time-Averaged Heat Transfer in a Pressurized Fluidized Bed With Horizontal Tubes: Influence of Pressure, Fluidization Velocity and Tube-Bank Geometry
,”
Chem. Eng. Sci.
,
50
(
20
), pp.
3231
3245
.
50.
Abd-Rabbo
,
M. A.
,
Berbish
,
N. S.
,
Mohammad
,
M. A.
, and
Mandour
,
M. M.
,
2013
, “
Forced Convection Heat Transfer From Three Dimensional Bodies in Cross-Flow
,”
Eng. Res. J.
,
137
, pp.
1
19
.
51.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1988
,
Handbook of Heat Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
52.
Patil
,
D. J.
,
Smit
,
J.
,
van Sint Annaland
,
M.
, and
Kuipers
,
J. A. M.
,
2006
, “
Wall-to-Bed Heat Transfer in Gas–Solid Bubbling Fluidized Beds
,”
AIChE J.
,
52
(
1
), pp.
58
74
.
53.
Chen
,
J. C.
,
Grace
,
J. R.
, and
Golriz
,
M. R.
,
2005
, “
Heat Transfer in Fluidized Beds: Design Methods
,”
Powder Technol.
,
150
(
2
), pp.
123
132
.
54.
Gelperin
,
N. I.
,
Einsten
,
V. G.
, and
Korotyanskaya
,
L. A.
,
1966
, “
Heat Transfer Between a Fluidized Bed and a Surface Immersed in it
,”
Int. Chem. Eng.
,
6
(
l
), pp.
67
73
.
55.
Ainshtein
,
V. A.
,
1966
, “An Investigation of Heat Transfer Process Between Fluidized Beds and Single Tubes Submerged in the Bed,”
Hydrodynamics and Heat Transfer in Fluidized Beds
,
S. S.
Zabordsky
, ed.,
MIT Press
,
Cambridge, MA
.
56.
Johnsson
,
F.
,
Andersson
,
S.
, and
Leckner
,
B.
,
1991
, “
Expansion of a Freely Bubbling Fluidized Bed
,”
Powder Technol.
,
68
(
2
), pp.
117
123
.
57.
Staub
,
F. W.
,
1980
, “
Steady State and Transient Gas–Solids Flow Characteristics in Vertical Transport Lines
,”
Powder Technol.
,
26
(
2
), pp.
147
159
.
58.
Llop
,
M. F.
,
Casal
,
J.
, and
Arnaldos
,
J.
,
2000
, “
Expansion of Gas–Solid Fluidized Beds at Pressure and High Temperature
,”
Powder Technol.
,
107
(
3
), pp.
212
225
.
59.
Löfstrand
,
H.
,
Almstedt
,
A. E.
, and
Andersson
,
S.
,
1995
, “
Dimensionless Expansion Model for Bubbling Fluidized Beds With and Without Internal Heat Exchanger Tubes
,”
Chem. Eng. Sci.
,
50
(
2
), pp.
245
253
.
60.
Abd-Rabbo
,
M. A.
,
Sakr
,
R. Y.
,
Mohammad
,
M. A.
, and
Mandour
,
M. M.
,
2019
, “
Numerical Study of Heat Transfer From Elliptic Tube in a Fluidized Bed
,”
J. Eng. Res. Reports
,
8
(
2
), pp.
1
9
.
61.
Ostermeier
,
P.
,
Dawo
,
F.
,
Vandersickel
,
A.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2018
, “
Numerical Calculation of Wall-to-Bed Heat Transfer Coefficients in Geldart B Bubbling Fluidized Beds With Immersed Horizontal Tubes
,”
Powder Technol.
,
333
, pp.
193
208
.
62.
Cammarata
,
L.
,
Lettieri
,
P.
,
Micale
,
G. D.
, and
Colman
,
D.
,
2003
, “
2D and 3D Simulations of Bubbling Fluidized Beds Using Eulerian–Eulerian Models
,”
Int. J. Chem. React. Eng.
,
1
(
1
), p.
A48
.
You do not currently have access to this content.