Abstract

The article presents the preparation and testing of packed bed (PB) material to be used as a thermal energy storage (TES) device. The proposed TES device will be used to store the high thermal energy attained during air compression in a compressed air energy storage (CAES) system. The article examines the utilization of mortar-based admixture by incorporating waste glass powder (WGP), graphite powder (GP), and waste glass sand (WGS). The selection of these constituents as a primary ingredient for the PB material has been made based on their availability, cost, and sustainability. The thermo-physical assessment of samples with different proportions of aggregates outlined two categories of PB: the first category of PB with low volumetric heat capacity (CP) for short/quick TES and the second category of PB with high CP for large/longer TES. The study also showcases the importance of GP in enhancing the CP of mortar-based TES devices as a result of high porosity.

References

1.
Budt
,
M.
,
Wolf
,
D.
,
Span
,
R.
, and
Yan
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments
,”
Appl. Energy
,
170
, pp.
250
268
.
2.
Siram
,
O.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2022
, “
Changing Landscape of India’s Renewable Energy and the Contribution of Wind Energy
,”
Clean. Eng. Technol.
,
8
, p.
100506
.
3.
López
,
A. I.
,
Ramírez-Díaz
,
A.
,
Castilla-Rodríguez
,
I.
,
Gurriarán
,
J.
, and
Mendez-Perez
,
J. A.
,
2023
, “
Wind Farm Energy Surplus Storage Solution With Second-Life Vehicle Batteries in Isolated Grids
,”
Energy Policy
,
173
, p.
113373
.
4.
Das
,
D.
,
Bordoloi
,
U.
,
Muigai
,
H. H.
, and
Kalita
,
P.
,
2020
, “
A Novel Form Stable PCM Based Bio Composite Material for Solar Thermal Energy Storage Applications
,”
J. Energy Storage
,
30
, p.
101403
.
5.
Mitali
,
J.
,
Dhinakaran
,
S.
, and
Mohamad
,
A. A.
,
2022
, “
Energy Storage Systems: A Review
,”
Energy Storage Saving
,
1
(
3
), pp.
166
216
.
6.
Bazdar
,
E.
,
Sameti
,
M.
,
Nasiri
,
F.
, and
Haghighat
,
F.
,
2022
, “
Compressed Air Energy Storage in Integrated Energy Systems: A Review
,”
Renew. Sust. Energy Rev.
,
167
, p.
112701
.
7.
Pimm
,
A. J.
,
Garvey
,
S. D.
, and
de Jong
,
M.
,
2014
, “
Design and Testing of Energy Bags for Underwater Compressed Air Energy Storage
,”
Energy
,
66
, pp.
496
508
.
8.
Stanek
,
B.
,
Ochmann
,
J.
,
Bartela
,
L.
,
Brzuszkiewicz
,
M.
,
Rulik
,
S.
, and
Waniczek
,
S.
,
2022
, “
Isobaric Tanks System for Carbon Dioxide Energy Storage—The Performance Analysis
,”
J. Energy Storage
,
52
(
A
), p.
104826
.
9.
Peng
,
H.
,
Li
,
R.
,
Ling
,
X.
, and
Dong
,
H.
,
2015
, “
Modeling on Heat Storage Performance of Compressed Air in a Packed Bed System
,”
Appl. Energy
,
160
, pp.
1
9
.
10.
Odukomaiya
,
A.
,
Kokou
,
E.
,
Hussein
,
Z.
,
Abu-Heiba
,
A.
,
Graham
,
S.
, and
Momen
,
A. M.
,
2017
, “
Near-Isothermal-Isobaric Compressed Gas Energy Storage
,”
J. Energy Storage
,
12
, pp.
276
287
.
11.
Barbour
,
E.
,
Mignard
,
D.
,
Ding
,
Y.
, and
Li
,
Y.
,
2015
, “
Adiabatic Compressed Air Energy Storage With Packed Bed Thermal Energy Storage
,”
Appl. Energy
,
155
, pp.
804
815
.
12.
Shafigh
,
P.
,
Asadi
,
I.
,
Akhiani
,
A. R.
,
Mahyuddin
,
N. B.
, and
Hashemi
,
M.
,
2020
, “
Thermal Properties of Cement Mortar With Different Mix Properties
,”
Mater. Construct.
,
70
(
339
), p.
e224
.
13.
Demirboǧa
,
R.
,
2003
, “
Influence of Mineral Admixtures on Thermal Conductivity and Compressive Strength of Mortar
,”
Energy Build.
,
35
(
2
), pp.
189
192
.
14.
Real
,
S.
,
Gomes
,
M. G.
,
Rodrigues
,
A. M.
, and
Bogas
,
J. A.
,
2016
, “
Contribution of Structural Lightweight Aggregate Concrete to the Reduction of Thermal Bridging Effect in Buildings
,”
Constr. Build. Mater.
,
121
, pp.
460
470
.
15.
Asadi
,
I.
,
Shafigh
,
P.
,
Abu Hassan
,
Z. F. B.
, and
Mahyuddin
,
N. B.
,
2018
, “
Thermal Conductivity of Concrete—A Review
,”
J. Build. Eng.
,
20
, pp.
81
93
.
16.
Gül
,
R.
,
Uysal
,
H.
, and
Demirboǧa
,
R.
,
1997
, “
Investigation of the Thermal Conductivity of Lightweight Concrete Made With Kocapinar’s Pumice Aggregate
,”
Advanced in Civil Eng. III: Proceedings of the Technical Congress, Vol. 2, METU
,
Ankara, Turkey
,
Jan. 1
, pp.
553
562
.
17.
Blanco
,
F.
,
Garcia
,
P.
,
Mateos
,
P.
, and
Ayala
,
J.
,
2000
, “
Characteristics and Properties of Lightweight Concrete Manufactured With Cenospheres
,”
Cem. Concr. Res.
,
30
(
11
), pp.
1715
1722
.
18.
Ruiz-Herrero
,
J. L.
,
Nieto
,
D. V.
,
López-Gil
,
A.
,
Arranz
,
A.
,
Fernández
,
A.
,
Lorenzana
,
A.
,
Merino
,
S.
,
De Saja
,
J. A.
, and
Rodríguez-Pérez
,
M. Á.
,
2016
, “
Mechanical and Thermal Performance of Concrete and Mortar Cellular Materials Containing Plastic Waste
,”
Constr. Build. Mater.
,
104
, pp.
298
310
.
19.
Grazzini
,
G.
, and
Milazzo
,
A.
,
2008
, “
Thermodynamic Analysis of CAES/TES Systems for Renewable Energy Plants
,”
Renew. Energy
,
33
(
9
), pp.
1998
2006
.
20.
Ibrahim
,
H.
,
Ilinca
,
A.
, and
Perron
,
J.
,
2008
, “
Energy Storage Systems—Characteristics and Comparisons
,”
Renew. Sust. Energy Rev.
,
12
(
5
), pp.
1221
1250
.
21.
Garvey
,
S. D.
,
2012
, “
The Dynamics of Integrated Compressed Air Renewable Energy Systems
,”
Renew. Energy
,
39
(
1
), pp.
271
292
.
22.
Hartmann
,
N.
,
Vohringer
,
O.
,
Kruck
,
C.
, and
Eltrop
,
L.
,
2012
, “
Simulation and Analysis of Different Adiabatic Compressed Air Energy Storage Plant Configurations
,”
Appl. Energy
,
93
, pp.
541
548
.
23.
Wolf
,
D.
, and
Budt
,
M.
,
2014
, “
LTA-CAES—A Low-Temperature Approach to Adiabatic Compressed Air Energy Storage
,”
Appl. Energy
,
125
, pp.
158
164
.
24.
Sobolev
,
K.
,
Türker
,
P.
,
Soboleva
,
S.
, and
Iscioglu
,
G.
,
2006
, “
Utilization of Waste Glass in ECO Cement, Strength Properties and Microstructural Observations
,”
Waste Manage.
,
27
(
7
), pp.
971
976
.
25.
Park
,
S. B.
,
Lee
,
B. C.
, and
Kim
,
J. H.
,
2004
, “
Studies on Mechanical Properties of Concrete Containing Waste Glass Aggregate
,”
Cem. Concr. Res.
,
34
(
12
), pp.
2181
2189
.
26.
Shayan
,
A.
, and
Xu
,
A.
,
2006
, “
Performance of Glass Powder as a Pozzolanic Material in Concrete: A Field Trial on Concrete Slabs
,”
Cem. Concr. Res.
,
36
(
3
), pp.
457
468
.
27.
Ali
,
E. E.
, and
Al-Tersawy
,
S. H.
,
2012
, “
Recycled Glass as a Partial Replacement for Fine Aggregate in Self-Compacting Concrete
,”
Constr. Build. Mater.
,
35
, pp.
785
791
.
28.
Wang
,
H.-Y.
, and
Huang
,
W.-L.
,
2010
, “
A Study on the Properties of Fresh Self-Consolidating Glass Concrete (SCGC)
,”
Constr. Build. Mater.
,
24
(
4
), pp.
619
624
.
29.
Belouadah
,
M.
,
Rahmouni
,
Z. E. A.
, and
Tebbal
,
N.
,
2019
, “
Influence of the Addition of Glass Powder and Marble Powder on the Physical and Mechanical Behavior of Composite Cement
,”
Proc. Comput. Sci.
,
158
, pp.
366
375
.
30.
Du
,
H.
, and
Tan
,
K. H.
,
2014
, “
Waste Glass Powder as Cement Replacement in Concrete
,”
J. Adv. Concr. Technol.
,
12
(
11
), pp.
468
477
.
31.
Bostanci
,
S. C.
,
2020
, “
Use of Waste Marble Dust and Recycled Glass for Sustainable Concrete Production
,”
J. Clean. Prod.
,
251
, p.
119785
.
32.
Rashad
,
A. M.
,
2014
, “
Recycled Waste Glass as Fine Aggregate Replacement in Cementitious Materials Based on Portland Cement
,”
Constr. Build. Mater.
,
72
, pp.
340
357
.
33.
Shaheen
,
F.
, and
Pradhan
,
B.
,
2020
, “
Role of Chloride Ion and Cation Type Accompanied by Sulfate Ion on Durability Performance of Concrete in Conjoint Chloride–Sulfate Environment
,”
ASCE J. Mater. Civil Eng.
,
32
(
9
), p.
04020264
.
34.
Almeshal
,
I.
,
Tayeh
,
B. A.
,
Alyousef
,
R.
,
Alabduljabbar
,
H.
, and
Mohamed
,
A. M.
,
2020
, “
Eco-Friendly Concrete Containing Recycled Plastic as Partial Replacement for Sand
,”
J. Mater. Res. Technol.
,
9
(
3
), pp.
631
4643
.
35.
Kewalramani
,
M.
, and
Khartabil
,
A.
,
2021
, “
Porosity Evaluation of Concrete Containing Supplementary Cementitious Materials for Durability Assessment Through Volume of Permeable Voids and Water Immersion Conditions
,”
Buildings
,
2021
(
11
), p.
378
.
You do not currently have access to this content.