Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Spirally corrugated tubes are widely used as high-efficiency heat transfer tubes in various industrial production fields due to their simple manufacturing, low cost, and bidirectional enhanced heat transfer ability. In this study, numerical simulations were conducted on the flow in multi-start spirally corrugated tubes with an equivalent inner diameter of Di = 20 mm. The effects of starts value of 1–8, pitch ratio p/Di of 1.5–3.0, ripple depth ratio e/Di of 0.05–0.20, and Reynolds number Re of 5000–3000 on the heat transfer and resistance characteristics of the multi-start spirally corrugated tubes were studied, and the mechanism of heat transfer enhancement was demonstrated by field synergy theory. In addition, through the performance evaluation standard performance evaluation criteria (PEC), the optimization design of the multi-start spirally corrugated tube was achieved. The research results indicate that increasing the start value and ripple depth improves heat transfer performance despite higher flow resistance. As the pitch increases, the heat transfer performance decreases, and the flow resistance correspondingly decreases. When the start value is 8, p/Di = 1.5, e/Di = 0.20, and Re = 20,000, it is the optimal PEC value, equal to 1.764. This will be of great significance for the design, manufacturing, and practical application of spirally corrugated tubes.

References

1.
Bashir
,
M. A.
, and
Ali
,
H. M.
,
2024
, “
Design and Analysis of PCM Integrated Solar Receiver With Double-Helical Tube Structure
,”
J. Energy Storage
,
84
(
Part A
), p.
110872
.
2.
Santhanam
,
H.
,
Ali
,
H. M.
, and
Sharma
,
R. K.
,
2024
, “
Thermal Performance Enhancement of Lauric Acid Using Nanomaterials as Composite Phase Change Material
,”
Environ. Sci. Pollut. Res.
,
31
(
27
), pp.
38618
38627
.
3.
Rehman
,
H. U.
,
Naseer
,
F.
, and
Ali
,
H. M.
,
2023
, “
An Experimental Case Study of Solar Food Dryer With Thermal Storage Using Phase Change Material
,”
Case Stud. Therm. Eng.
,
51
(
Suppl C
), p.
103611
.
4.
Bergles
,
A. E.
,
1988
, “
Some Perspectives on Enhanced Heat Transfer—Second-Generation Heat Transfer Technology
,”
ASME J. Heat Transf.
,
110
(
4b
), pp.
1082
1096
.
5.
Jin
,
Z. J.
,
Liu
,
B. Z.
,
Chen
,
F. Q.
,
Gao
,
Z. X.
,
Gao
,
X. F.
, and
Qian
,
J. Y.
,
2016
, “
CFD Analysis on Flow Resistance Characteristics of Six-Start Spirally Corrugated Tube
,”
Int. J. Heat Mass Transf.
,
103
, pp.
1198
1207
.
6.
Yang
,
S.
,
Zhang
,
L.
, and
Xu
,
H.
,
2011
, “
Experimental Study on Convective Heat Transfer and Flow Resistance Characteristics of Water Flow in Twisted Elliptical Tubes
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2981
2991
.
7.
Guo
,
J.
,
Yan
,
Y. X.
,
Liu
,
W.
,
Jiang
,
F. M.
, and
Fan
,
A. W.
,
2013
, “
Effects of Upwind Area of Tube Inserts on Heat Transfer and Flow Resistance Characteristics of Turbulent Flow
,”
Exp. Therm. Fluid Sci.
,
48
(
7
), pp.
147
155
.
8.
Navaei
,
A. S.
,
Mohammed
,
H. A.
,
Munisamy
,
K. M.
,
Yarmand
,
H.
, and
Gharehichani
,
S.
,
2015
, “
Heat Transfer Enhancement of Turbulent Nanofluid Flow Over Various Types of Internally Corrugated Channels
,”
Powder Technol.
,
286
, pp.
332
341
.
9.
Vanaki
,
S. M.
, and
Mohammed
,
H. A.
,
2015
, “
Numerical Study of Nanofluid Forced Convection Flow in Channels Using Different Shaped Transverse Ribs
,”
Int. Commun. Heat Mass Transf.
,
67
, pp.
176
188
.
10.
Bhattacharyya
,
S.
,
Chattopadhyay
,
H.
, and
Benim
,
A. C.
,
2017
, “
Computational Investigation of Heat Transfer Enhancement by Alternating Inclined Ribs in Tubular Heat Exchanger
,”
Prog. Comput. Fluid Dyn.
,
17
(
6
), pp.
390
396
.
11.
Luo
,
L.
,
Yan
,
H.
,
Du
,
W.
,
Wang
,
S. T.
,
Li
,
C. H.
, and
Zhang
,
X. H.
,
2018
, “
Flow Structure and Heat Transfer Characteristics of a Rectangular Channel With Pin Fins and Dimples With Different Shapes
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
024501
.
12.
Ajeel
,
R. K.
,
Salim
,
W. S.-I. W.
, and
Hasnan
,
K.
,
2020
, “
Numerical Investigations of Heat Transfer Enhancement in a House Shaped-Corrugated Channel: Combination of Nanofluid and Geometrical Parameters
,”
Therm. Sci. Eng. Prog.
,
17
, p.
100376
.
13.
Qian
,
J. Y.
,
Yang
,
C.
,
Chen
,
M. R.
, and
Jin
,
Z. J.
,
2020
, “
Thermohydraulic Performance Evaluation of Multi-Start Spirally Corrugated Tubes
,”
Int. J. Heat Mass Transf.
,
156
, p.
119876
.
14.
Ahn
,
S. W.
,
2003
, “
Experimental Studies on Heat Transfer in the Annuli With Corrugated Inner Tubes
,”
Korea J. Air-Cond. Ref. Eng.
,
17
(
8
), pp.
1226
1233
.
15.
Vicente
,
P. G.
,
Garcia
,
A.
, and
Viedma
,
A.
,
2004
, “
Experimental Investigation on Heat Transfer and Frictional Characteristics of Spirally Corrugated Tubes in Turbulent Flow at Different Prandtl Numbers
,”
Int. J. Heat Mass Transf.
,
47
(
4
), pp.
671
681
.
16.
Jin
,
Z.
,
Chen
,
F.
,
Gao
,
Z.
,
Gao
,
X.
, and
Qian
,
J.
,
2017
, “
Effects of Pitch and Corrugation Depth on Heat Transfer Characteristics in Six-Start Spirally Corrugated Tube
,”
Int. J. Heat Mass Transf.
,
108
(
Part A
), pp.
1011
1025
.
17.
Campet
,
R.
,
Zhu
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Nemri
,
M.
,
2019
, “
Large Eddy Simulation of a Single-Started Helically Ribbed Tube With Heat Transfer
,”
Int. J. Heat Mass Transf.
,
132
, pp.
961
969
.
18.
Yang
,
C.
,
Liu
,
G.
,
Zhang
,
J. H.
, and
Qian
,
J. Y.
,
2020
, “
Thermohydraulic Analysis of Hybrid Smooth and Spirally Corrugated Tubes
,”
Int. J. Therm. Sci.
,
158
, p.
106520
.
19.
Li
,
Y.
,
Wu
,
J.
,
Wang
,
H.
,
Kou
,
L.
, and
Tian
,
X.
,
2012
, “
Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating With Spiral Corrugation
,”
Energy Proc.
,
17
(
Part A
), pp.
791
800
.
20.
Kalendar
,
A.
,
Galal
,
T.
,
Al-Saftawi
,
A.
, and
Zedan
,
M.
,
2011
, “
Enhanced Tubing Thermal Performance for Innovative MSF System
,”
J. Mech. Sci. Technol.
,
25
(
8
), pp.
1969
1977
.
21.
Promthaisong
,
P.
,
Jedsadaratanachai
,
W.
, and
Eiamsa-Ard
,
S.
,
2016
, “
3D Numerical Study on the Flow Topology and Heat Transfer Characteristics of Turbulent Forced Convection in Spirally Corrugated Tube
,”
Numer. Heat Transf.
,
69
(
6
), pp.
607
629
.
22.
Li
,
X. Z.
,
Liu
,
S. J.
,
Mo
,
X.
,
Sun
,
Z. Y.
,
Tian
,
G.
,
Xin
,
Y. F.
, and
Zhu
,
D. S.
,
2023
, “
Investigation on Convection Heat Transfer Augment in Spirally Corrugated
,”
Energies
,
16
(
3
), p.
1063
.
23.
Xin
,
F.
,
Liu
,
Z.
,
Zheng
,
N.
,
Liu
,
P.
, and
Liu
,
W.
,
2018
, “
Numerical Study on Flow Characteristics and Heat Transfer Enhancement of Oscillatory Flow in a Spirally Corrugated Tube
,”
Int. J. Heat Mass Transf.
,
127
(
Part A
), pp.
402
413
.
24.
Kareem
,
Z. S.
,
Abdullah
,
S.
,
Lazim
,
T. M.
,
Jaafar
,
M. N. M.
, and
Wahid
,
A. F. A.
,
2015
, “
Heat Transfer Enhancement in Three-Start Spirally Corrugated Tube: Experimental and Numerical Study
,”
Chem. Eng. Sci.
,
134
, pp.
746
757
.
25.
Wang
,
T.
,
Zhang
,
Q.
,
Song
,
K. W.
,
Zhang
,
K.
,
Su
,
M.
, and
Wu
,
X.
,
2022
, “
Thermodynamic Characteristics of a Novel Combination of Three-Start Twisted Tube and Oval Dimples
,”
Case Stud. Therm. Eng.
,
37
(
Suppl C
), p.
102284
.
26.
Chen
,
X. D.
,
Xu
,
X. Y.
,
Nguang
,
S. K.
, and
Bergles
,
A. E.
,
2011
, “
Characterization of the Effect of Corrugation Angles on Hydrodynamic and Heat Transfer Performance of Four-Start Spiral Tubes
,”
J. Heat Transf.
,
123
(
6
), pp.
1149
1158
.
27.
Yang
,
C.
,
Chen
,
M. R.
,
Qian
,
J. Y.
,
Wu
,
Z.
,
Jin
,
Z. J.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer Study of a Hybrid Smooth and Spirally Corrugated Tube
,”
Heat Transf. Eng.
,
42
(
3–4
), pp.
242
250
.
28.
Balla
,
H. H.
,
2017
, “
Enhancement of Heat Transfer in Six-Start Spirally Corrugated Tubes
,”
Case Stud. Therm. Eng.
,
9
(
C
), pp.
79
89
.
29.
Sethumadhavan
,
R.
, and
Raja Rao
,
M.
,
1986
, “
Turbulent Flow Friction and Heat Transfer Characteristics of Single and Multistart Spirally Enhanced Tubes
,”
J. Heat Transf.
,
108
(
1
), pp.
55
61
.
30.
Kongkaitpaiboon
,
V.
,
Promthaisong
,
P.
,
Chuwattanakul
,
V.
,
Wongcharee
,
K.
, and
Eiamsa-ard
,
S.
,
2019
, “
Effects of Spiral Start Number and Depth Ratio of Corrugated Tube on Flow and Heat Transfer Characteristics in Turbulent Flow Region
,”
J. Mech. Sci. Technol.
,
33
(
8
), pp.
4005
4012
.
31.
Ganeshan
,
S.
, and
Rao
,
M. R.
,
1982
, “
Studies on Thermohydraulics of Single- and Multi-Start Spirally Corrugated Tubes for Water and Time-Independent Power law Fluids
,”
Int. J. Heat Mass Transf.
,
25
(
7
), pp.
1013
1022
.
32.
Omidi
,
M.
,
Farhadi
,
M.
, and
Darzi
,
A. A. R.
,
2018
, “
Numerical Study of Heat Transfer on Using Lobed Cross Sections in Helical Coil Heat Exchangers: Effect of Physical and Geometrical Parameters
,”
Energy Convers. Manage.
,
176
, pp.
236
245
.
33.
Harleß
,
A.
,
Franz
,
E.
, and
Breuer
,
M.
,
2016
, “
Experimental Investigation of Heat Transfer and Friction Characteristic of Fully Developed gas Flow in Single-Start and Three-Start Corrugated Tubes
,”
Int. J. Heat Mass Transf.
,
103
, pp.
538
547
.
34.
Guo
,
Z. Y.
,
Tao
,
W. Q.
, and
Shah
,
R. K.
,
2005
, “
The Field Synergy (Coordination) Principle and Its Applications in Enhancing Single Phase Convective Heat Transfer
,”
Int. J. Heat Mass Transf.
,
48
(
9
), pp.
1797
1807
.
35.
Wei
,
L.
,
Zhichun
,
L.
,
Tingzhen
,
M.
, and
Zengyuan
,
G.
,
2009
, “
Physical Quantity Synergy in Laminar Flow Field and Its Application in Heat Transfer Enhancement
,”
Int. J. Heat Mass Transf.
,
52
(
19–20
), pp.
4669
4672
.
36.
Wu
,
Z. W.
,
Qian
,
C. F.
,
Liu
,
G.
,
Liu
,
Z. S.
, and
Sheng
,
P.
,
2021
, “
Mechanical Properties and Heat Transfer Performance of Conically Corrugated Tube
,”
Materials (Basel)
,
14
(
17
), p.
4902
.
37.
Wu
,
Z.
, and
Qian
,
C.
,
2020
, “
Numerical Investigation of Fluid Flow and Heat Transfer Characteristics in Helical Tube With Spiral Corrugations
,”
J. Phys.: Conf. Ser.
,
1549
(
4
), p.
042114
.
38.
Tang
,
K.
,
Yu
,
J.
,
Jin
,
T.
, and
Gan
,
Z. H.
,
2013
, “
Influence of Compression-Expansion Effect on Oscillating-Flow Heat Transfer in a Finned Heat Exchanger
,”
J. Zhejiang Univ. Sci. A.
,
14
(
6
), pp.
427
434
.
39.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transf.
,
6
, pp.
503
564
.
40.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1988
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transf.
,
41
(
14
), pp.
2221
2225
.
41.
Taguchi
,
G.
,
1983
, “
Signal-to-Noise Ratio (SNR) and Dynamic Characteristics
,”
Math. Stat. Manage.
,
4
, pp.
21
24
.
You do not currently have access to this content.