Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Hot isostatic pressing (HIP) technology is currently the primary process for manufacturing high-performance advanced materials, powder metallurgy, and diffusion bonding. With the increasing demand for enhanced material performance and a wider range of materials, the HIP process now requires reaching temperatures of up to 2000 °C and pressures of 200 MPa, with a temperature range of less than ±5 °C. This presents significant challenges in equipment design. This article utilizes engineering data inversion methods to accurately determine material parameters under high temperatures and establishes a visual simulation model for the core area of HIP equipment. By comparing the calculated temperatures with actual equipment temperature uniformity during experimental processes, the study found that after 120 min of heating, the simulated temperature in the working area closely matched the actual engineering temperature of 2105.36 K, with an error of less than 5%. Under empty furnace conditions, the minimum temperature difference in the working area is 12 K, and effective temperature uniformity can be easily achieved through insulation. Simulation results indicated that the processed product may decrease temperature uniformity in the furnace, suggesting that adding bottom insulation could increase temperature uniformity in the effective heat zone by 25%. This research provides a theoretical foundation for HIP equipment design and process optimization through simulation, ultimately enhancing process quality in a cost-effective and cost-efficient manner.

References

1.
ElRakayby
,
H.
,
Kim
,
H.
,
Hong
,
S.
, and
Kim
,
K.
,
2015
, “
An Investigation of Densification Behavior of Nickel Alloy Powder During Hot Isostatic Pressing
,”
Adv. Powder Technol.
,
26
(
5
), pp.
1314
1318
.
2.
Song
,
J.
, and
Sun
,
B.
,
2017
, “
Thermal-Structural Analysis of Regeneratively-Cooled Thrust Chamber Wall in Reusable LOX/Methane Rocket Engines
,”
Chin. J. Aeronaut.
,
30
(
3
), pp.
1043
1053
.
3.
Zhou
,
Y.
,
Zhang
,
Z.
,
Zhao
,
Z.
, and
Zhong
,
Q.
,
2013
, “
Effects of HIP Temperature on the Microstructural Evolution and Property Restoration of a Ni-Based Superalloy
,”
J. Mater. Eng. Perform.
,
22
(
1
), pp.
215
222
.
4.
Li
,
X.
,
Zhang
,
L.
,
Sun
,
Y.
,
Jiang
,
B.
,
Li
,
X.
, and
Wang
,
J.
,
2015
, “
Numerical Simulation of the Flue Gas Side of Refining Vacuum Furnace Using CFD
,”
Chem. Eng. Sci.
,
123
, pp.
70
80
.
5.
Mei
,
D.
,
Xing
,
F.
,
Wen
,
M.
,
Lei
,
P.
, and
Fang
,
Z.
,
2016
, “
Numerical Simulation of Mixed Convection Heat Transfer of Galvanized Steel Sheets in the Vertical Alloying Furnace
,”
Appl. Therm. Eng.
,
93
, pp.
500
508
.
6.
Kumar
,
S.
, and
Bisht
,
V. S.
,
2018
, “2D Modelling and Simulation of Heat Transfer in Blast Furnace Hearth Using ANSYS,”
Intelligent Communication, Control and Devices
,
R.
Singh
,
S.
Choudhury
, and
A.
Gehlot
, eds.,
Springer Singapore
,
Singapore
, pp.
1051
1063
.
7.
Minea
,
A. A.
,
2010
, “
Simulation of Heat Transfer Processes in an Unconventional Furnace
,”
J. Eng. Thermophys.
,
19
(
1
), pp.
31
38
.
8.
Haohua
,
X.
,
Tao
,
X.
,
Jian
,
T.
,
Lulu
,
F.
,
Tianshuang
,
X.
, and
Tatsuo
,
Y.
,,
2016
, “
Research on the Temperature Uniformity of Vacuum Furnace and Size Optimization of Working Zone
,”
Proceedings of the 2016 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)
,
Beijing, China
,
May 19
, IEEE, pp.
789
792
.
9.
Bhujbal
,
S.
,
Andhale
,
A.
,
Deshpande
,
A.
, and
Pimpalnerkar
,
S.
,
2016
, “
Implementation of Control Algorithm for Furnace Temperature Control in CFD Simulation
,”
Proceedings of the 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT)
,
Pune, India
,
Sept. 1
, IEEE, pp.
110
113
.
10.
El Khoury
,
R. R.
,
Errera
,
M.
,
El Khoury
,
K.
, and
and Nemer
,
M.
,
2017
, “
Efficiency of Coupling Schemes for the Treatment of Steady State Fluid-Structure Thermal Interactions
,”
Int. J. Therm. Sci.
,
115
, pp.
225
235
.
11.
Nee
,
A.
, and
Chamkha
,
A. J.
,
2022
, “
Hybrid Lattice Boltzmann 3D Simulation of Combined Heat Transfer by Conduction, Convection and Radiation,” Case Stud
,”
Therm. Eng.
,
32
, p.
101902
.
12.
Zhu
,
J.
,
Frerich
,
T.
,
Dimassi
,
A.
,
Koerdt
,
M.
, and
Herrmann
,
A. S.
,
2022
, “
Experimental Validation of a Quasi-Transient Coupling Approach for the Modeling of Heat Transfer in Autoclave Processing
,”
J. Compos. Mater.
,
56
(
5
), pp.
797
810
.
13.
Zhu
,
J.
,
Frerich
,
T.
,
Dimassi
,
A.
,
Droste
,
D.
, and
Herrmann
,
A. S.
,
2021
, “
A Quasi-Transient Coupling Approach to the Modeling of Conjugate Heat Transfer in the Autoclave
,”
J. Reinf. Plast. Compos.
,
40
(
23–24
), pp.
912
926
.
14.
Yu
,
R.
,
Chen
,
C.
,
Wang
,
G.
,
Liu
,
G.
,
Wang
,
S.
,
Hu
,
X.
,
Lei
,
M.
,
Xu
,
X.
, and
Zhang
,
L.
,
2021
, “
Influence of Different Heater Structures on the Temperature Field of AlN Crystal Growth by Resistance Heating
,”
Materials
,
14
(
23
), p.
7441
.
15.
Okada
,
M.
,
Ohta
,
N.
,
Yoshimoto
,
O.
,
Tatsumi
,
M.
, and
Inagaki
,
M.
,
2017
, “
Review on the Highs-Temperature Resistance of Graphite in Inert Atmospheres
,”
Carbon
,
116
, pp.
737
743
.
16.
Okada
,
M.
,
Okuni
,
T.
, and
Inagaki
,
M.
,
2018
, “
Operation Optimization of Superhigh-Temperature Furnace Using Graphite Heater
,”
Carbon
,
139
, pp.
700
708
.
17.
Wang
,
J.
,
Liu
,
Y.
,
Sundén
,
B.
,
Yang
,
R.
,
Baleta
,
J.
, and
Vujanović
,
M.
,
2017
, “
Analysis of Slab Heating Characteristics in a Reheating Furnace
,”
Energy Convers. Manag.
,
149
, pp.
928
936
.
18.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2016
, “
Numerical Modeling of Interfacial Heat and Mass Transport Phenomena During a Phase Change Using ANSYS-Fluent
,”
Numer. Heat Transfer, Part B
,
70
(
4
), pp.
322
339
.
19.
Fu
,
Z.
,
Yu
,
X.
,
Shang
,
H.
,
Wang
,
Z.
, and
Zhang
,
Z.
,
2019
, “
A New Modelling Method for Superalloy Heating in Resistance Furnace Using FLUENT
,”
Int. J. Heat Mass Transfer
,
128
, pp.
679
687
.
You do not currently have access to this content.