Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Thermal insulation material (TIM) is commonly employed to enhance the thermal behavior of the lightweight walls. To further obtain the energy-saving effect of the walls, the composite wall (ATIM) combined autoclaved aerated concrete (AAC) block with TIM was present in this study. A testing rig with an ATIM wall was constructed and tested in summer design days, while the numerical modeling was developed and validated using the experimental data. Furthermore, reference walls of the brick and AAC with the same dimension as the ATIM wall were established to evaluate its thermal behavior. The thermal behavior and economic evaluation of the ATIM wall were then investigated by varying the thickness and position of the TIM using the numerical method. And the research results indicated that: (1) the average inner surface temperature of the ATIM wall is approximately 1.1 °C lower than that of the AAC wall, 1.3 °C lower than that of brick wall, the thickness of TIM is positively correlated with decreasing wall surface temperature, while TIM positions have minimal impact on reducing surface temperature; (2) heat gain reduction ratio for ATIM wall (δ = 20 mm) is approximately 52.7%, which is 8.1% higher than that of AAC wall, and variation in TIM position can decrease the heat gain, with inside or outside placement being more effective than positioning it in the middle part; (3) CO2 emission saving (CO2ES) and electricity cost saving (ECS) for room C (ATIM wall) is approximately 7.05 kg/100 m3/day and 5.23 RMB/100 m3/day, respectively, outperforming room A (brick wall) and room B (AAC wall) in terms of energy efficiency and economic benefits.

References

1.
Zheng
,
Z.
,
Xiao
,
J.
,
Yang
,
Y.
,
Xu
,
F.
,
Zhou
,
J.
, and
Liu
,
H.
,
2024
, “
Optimization of Exterior Wall Insulation in Office Buildings Based on Wall Orientation: Economic, Energy and Carbon Saving Potential in China
,”
Energy
,
290
, p.
130300
.
2.
Hu
,
K.
,
Yan
,
C.
,
Xu
,
C.
,
Li
,
W.
,
Ye
,
J.
,
Gong
,
Y.
, and
Xu
,
Y.
,
2024
, “
Strategies for Grid-Friendly and Uncertainty-Adaptive Design in Zero Energy Buildings
,”
Energy Build.
,
307
, p.
113967
.
3.
Ma
,
M.
,
Feng
,
W.
,
Huo
,
J.
, and
Xiang
,
X.
,
2022
, “
Operational Carbon Transition in the Megalopolises' Commercial Buildings
,”
Build. Environ.
,
226
, p.
109705
.
4.
Minelli
,
F.
,
Ciriello
,
I.
,
Minichiello
,
F.
, and
D'Agostino
,
D.
,
2024
, “
From Net Zero Energy Buildings to an Energy Sharing Model—The Role of NZEBs in Renewable Energy Communities
,”
Renewable Energy
,
223
, p.
120110
.
5.
Boubekri
,
M.
,
Chaker
,
A.
, and
Saadi
,
S.
,
2021
, “
Modeling and Simulation of a Vertical Multi-Effect Diffusion Solar Still Coupled With a Tracking Solar System and a PV/T-SWH System
,”
ASME J. Thermal Sci. Eng. Appl.
,
13
(
5
), p.
051003
.
6.
Liu
,
Z. A.
,
Hou
,
J.
,
Meng
,
X.
, and
Dewancker
,
B. J.
,
2021
, “
A Numerical Study on the Effect of Phase-Change Material (PCM) Parameters on the Thermal Performance of Lightweight Building Walls
,”
Case Stud. Constr. Mater.
,
15
, p.
e00758
.
7.
Ding
,
X.
,
Yu
,
J.
,
Lin
,
J.
,
Chen
,
Z.
, and
Li
,
J.
,
2024
, “
Experimental Investigations of Prefabricated Lightweight Self-Insulating Foamed Concrete Wall Panels
,”
Structures
,
61
, p.
106001
.
8.
Yu
,
C.
,
Shen
,
D.
,
Wang
,
W.
,
Song
,
X.
,
Xin
,
J.
,
Cai
,
L.
, and
Tu
,
J.
,
2022
, “
Numerical Study on the Thermal Performance of Phase Change Materials Wall by Radiative Cooling
,”
Appl. Therm. Eng.
,
215
, p.
119013
.
9.
Benkaddour
,
A.
, and
Faraji
,
M.
,
2022
, “
Numerical Investigation of a Phase Change Material Building Integrating Solar Thermal Collector PCM-BST
,”
ASME J. Thermal Sci. Eng. Appl.
,
14
(
8
), p.
081015
.
10.
Michelini
,
E.
,
Ferretti
,
D.
,
Miccoli
,
L.
, and
Parisi
,
F.
,
2023
, “
Autoclaved Aerated Concrete Masonry for Energy Efficient Buildings: State of the Art and Future Developments
,”
Constr. Build. Mater.
,
402
, p.
132996
.
11.
Jin
,
H.-Q.
,
Yao
,
X.-L.
,
Fan
,
L.-W.
,
Xu
,
X.
, and
Yu
,
Z.-T.
,
2016
, “
Experimental Determination and Fractal Modeling of the Effective Thermal Conductivity of Autoclaved Aerated Concrete: Effects of Moisture Content
,”
Int. J. Heat Mass Transfer
,
92
, pp.
589
602
.
12.
Tian
,
S.-Q.
,
Yu
,
S.-F.
,
Wang
,
X.
,
Fan
,
L.-W.
,
Yu
,
Z.-T.
,
Xu
,
X.
, and
Ge
,
J.
,
2019
, “
Experimental Determination and Fractal Modeling of the Effective Thermal Conductivity of Autoclave Aerated Concrete (AAC) Impregnated With Paraffin for Improved Thermal Storage Performance
,”
Appl. Therm. Eng.
,
163
, p.
114387
.
13.
Qu
,
M.-L.
,
Tian
,
S.-Q.
,
Fan
,
L.-W.
,
Yu
,
Z.-T.
, and
Ge
,
J.
,
2020
, “
An Experimental Investigation and Fractal Modeling on the Effective Thermal Conductivity of Novel Autoclaved Aerated Concrete (AAC)-Based Composites With Silica Aerogels (SA)
,”
Appl. Therm. Eng.
,
179
, p.
115770
.
14.
Pehlivanlı
,
Z. O.
,
Uzun
,
İ
,
Yücel
,
Z. P.
, and
Demir
,
İ
,
2016
, “
The Effect of Different Fiber Reinforcement on the Thermal and Mechanical Properties of Autoclaved Aerated Concrete
,”
Constr. Build. Mater.
,
112
, pp.
325
330
.
15.
Onur Pehlivanlı
,
Z.
, and
Uzun
,
İ.
,
2022
, “
Effect of Polypropylene Fiber Length on Mechanical and Thermal Properties of Autoclaved Aerated Concrete
,”
Constr. Build. Mater.
,
322
, p.
126506
.
16.
Punlek
,
C.
,
Maneewan
,
S.
, and
Thongtha
,
A.
,
2017
, “
Phase Change Material Coating on Autoclaved Aerated Lightweight Concrete for Cooling Load Reduction
,”
Mater. Sci.-Medzg.
,
23
(
2
), pp.
161
165
.
17.
Zhao
,
Z.
,
Yang
,
X.
,
Qu
,
X.
,
Zheng
,
J.
, and
Mai
,
F.
,
2021
, “
Thermal Insulation Performance Evaluation of Autoclaved Aerated Concrete Panels and Sandwich Panels Based on Temperature Fields: Experiments and Simulations
,”
Constr. Build. Mater.
,
303
, p.
124560
.
18.
Zhao
,
Z.
,
Qu
,
X.
,
Pang
,
J.
,
Yang
,
X.
,
Wen
,
H.
,
Yu
,
C.
,
Chen
,
C.
,
Tian
,
C.
,
Li
,
Z.
, and
Zhao
,
S.
,
2023
, “
Numerical Simulation of Pore Structure and Heat Transfer Behavior in Aerated Concrete
,”
Constr. Build. Mater.
,
364
, p.
129934
.
19.
Pietras
,
D.
,
Aliha
,
M. R. M.
, and
Sadowski
,
T.
,
2021
, “
Mode III Fracture Toughness Testing and Numerical Modeling for Aerated Autoclaved Concrete Using Notch Cylinder Specimen Subjected to Torsion
,”
Mater. Today Proc.
,
45
, pp.
4326
4329
.
20.
Yu
,
Q.
,
Zeng
,
D.
,
Xu
,
X.
,
Li
,
S.
,
Dong
,
W.
, and
Dai
,
L.
,
2022
, “
Experimental and Numerical Investigation of Polymer-Reinforced and Normal Autoclaved Aerated Concrete Masonry Walls Under Large TNT Explosive Loads
,”
Int. J. Impact Eng.
,
164
, p.
104188
.
21.
Shon
,
C. S.
,
Mukangali
,
I.
,
Zhang
,
D. C.
,
Ulykbanov
,
A.
, and
Kim
,
J.
,
2021
, “
Evaluation of Non-Autoclaved Aerated Concrete for Energy Behaviors of a Residential House in Nur-Sultan, Kazakhstan
,”
Buildings
,
11
(
12
), p.
610
.
22.
Mohseni
,
E.
, and
Tang
,
W.
,
2021
, “
Parametric Analysis and Optimisation of Energy Efficiency of a Lightweight Building Integrated With Different Configurations and Types of PCM
,”
Renewable Energy
,
168
, pp.
865
877
.
23.
Dahanayake
,
K. W. D. K. C.
, and
Chow
,
C. L.
,
2017
, “
Studying the Potential of Energy Saving Through Vertical Greenery Systems: Using EnergyPlus Simulation Program
,”
Energy Build.
,
138
, pp.
47
59
.
24.
Al-Yasiri
,
Q.
, and
Szabó
,
M.
,
2023
, “
Experimental Study of PCM-Enhanced Building Envelope Towards Energy-Saving and Decarbonisation in a Severe Hot Climate
,”
Energy Build.
,
279
, p.
112680
.
25.
Wang
,
Q.
,
Wu
,
R.
,
Wu
,
Y.
, and
Zhao
,
C. Y.
,
2018
, “
Parametric Analysis of Using PCM Walls for Heating Loads Reduction
,”
Energy Build.
,
172
, pp.
328
336
.
26.
Planning, C. A. o. E.
,
2023
, “Report on CO2 Emission Factors of China's Regional Power Grids,” http://www.caep.org.cn/sy/tdftzhyjzx/zxdt/202310/t20231027_1044179.shtml
27.
Commission, A. P. D. a. R.
,
2020
, “Notice on Sales Electricity Prices in Anhui Province, ” https://fzggw.ah.gov.cn/ywdt/tzgg/145298681.html
28.
Hong
,
X.
,
Leung
,
M. K. H.
, and
He
,
W.
,
2019
, “
Effective use of Venetian Blind in Trombe Wall for Solar Space Conditioning Control
,”
Appl. Energy
,
250
, pp.
452
460
.
You do not currently have access to this content.