Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This research provides a comprehensive multivariable comparative investigation of the effect of various microchannel configurations on their thermal performance. Three-dimensional fluid flow and heat transfer simulations are performed with different arrangements of the channel's width tapering and cross-sectional aspect ratio with an emphasis on the synergistic proven effects of geometrical parameters in innovatory combinations. Results confirm that wavy channels are significantly superior to straight channels in terms of thermal performance due to the creation of secondary flow (Dean Vortices), which improves the processes of advective mixing and, therefore, overall heat transfer characteristics with minimal pumping power penalty. Width tapering of wavy channels also shows better thermal resistance than untapered wavy channels producing almost 10% thermal resistance improvement. The study indicates a significant dependency of thermal performance on the cross-sectional aspect ratio of the channel, which suggests that there are ideal tapering and aspect ratio conditions. An innovative wavy-tapered microchannel heat sink has been introduced, featuring an optimal parametric configuration and directionally alternating coolant flow. This design results in additional thermal resistance improvement by 15% and significantly improves substrate temperature distribution uniformity. Overall, the results demonstrate the superior potential of the configuration for high-end electronics cooling tasks. These results provide interpretive insight into microchannel heat sink design and optimization.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Kim
,
S.
, and
Mudawar
,
I.
,
2010
, “
Analytical Heat Diffusion Models for Different Micro-Channel Heat Sink Cross-Sectional Geometries
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4002
4016
.
3.
Shahsavari
,
S.
,
Tamayol
,
A.
,
Kjeang
,
E.
, and
Bahrami
,
M.
,
2012
, “
Convective Heat Transfer in Microchannels of Noncircular Cross Sections: An Analytical Approach
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091701
.
4.
Xia
,
G.
,
Chai
,
L.
,
Wang
,
H.
,
Zhou
,
M.
, and
Cui
,
Z.
,
2011
, “
Optimum Thermal Design of Microchannel Heat Sink With Triangular Reentrant Cavities
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1208
1219
.
5.
Chai
,
L.
,
Xia
,
G.
,
Zhou
,
M.
, and
Li
,
J.
,
2011
, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Microchannel Heat Sink with Offset Fan-Shaped Reentrant Cavities in Sidewall
,”
Int. Commun. Heat Mass Transfer
,
38
(
5
), pp.
577
584
.
6.
Xia
,
G.
,
Zhai
,
Y.
, and
Cui
,
Z.
,
2013
, “
Numerical Investigation of Thermal Enhancement in a Micro Heat Sink With Fan-Shaped Reentrant Cavities and Internal Ribs
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
52
60
.
7.
Zhai
,
Y. L.
,
Xia
,
G. D.
,
Liu
,
X. F.
, and
Li
,
Y. F.
,
2014
, “
Heat Transfer in the Microchannels With Fan-Shaped Reentrant Cavities and Different Ribs Based on Field Synergy Principle and Entropy Generation Analysis
,”
Int. J. Heat Mass Transfer
,
68
, pp.
224
233
.
8.
Srivastava
,
P.
,
Dewan
,
A.
, and
Bajpai
,
J. K.
,
2017
, “
Flow and Heat Transfer Characteristics in Convergent-Divergent Shaped Microchannel With Ribs and Cavities
,”
Int. J. Heat Technol.
,
35
(
4
), pp.
863
873
.
9.
Hou
,
T.
, and
Chen
,
Y.
,
2020
, “
Pressure Drop and Heat Transfer Performance of Microchannel Heat Exchanger With Circular Reentrant Cavities and Ribs
,”
ASME J. Heat Transfer
,
142
(
4
), p.
042502
.
10.
Zhang
,
Q.
,
Li
,
Z.
,
Feng
,
Z.
,
Chen
,
Z.
,
Zhang
,
J.
, and
Guo
,
F.
,
2023
, “
Effects of Combination Modes of Different Cavities and Ribs on Performance in Mini-Channels—A Comprehensive Study
,”
Int. Commun. Heat Mass Transfer
,
142
, p.
106633
.
11.
McConalogue
,
D. J.
, and
Srivastava
,
R. S.
,
1968
, “
Motion of a Fluid in a Curved Tube
,”
Proc. R. Soc. London, A
,
307
(
1488
), pp.
37
53
.
12.
Berger
,
S. A.
,
Talbot
,
A. L.
, and
Yao
,
L. S.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
461
512
.
13.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13
), pp.
2760
2772
.
14.
Mohammed
,
H. A.
,
Gunnasegaran
,
P.
, and
Shuaib
,
N. H.
,
2011
, “
Numerical Simulation of Heat Transfer Enhancement in Wavy Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
38
(
1
), pp.
63
68
.
15.
Xie
,
G.
,
Liu
,
J.
, and
Liu
,
Y.
,
2013
, “
Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021008
.
16.
Rostami
,
J.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2015
, “
Optimization of Conjugate Heat Transfer in Wavy Walls Microchannels
,”
Appl. Therm. Eng.
,
82
, pp.
318
328
.
17.
Dominic
,
A.
,
Sarangan
,
J.
,
Suresh
,
S.
, and
Devah Dhanush
,
V. S.
,
2015
, “
An Experimental Investigation of Wavy and Straight Minichannel Heat Sinks Using Water and Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
031012
.
18.
Ghule
,
K.
, and
Soni
,
M. S.
,
2017
, “
Numerical Heat Transfer Analysis of Wavy Microchannels With Different Cross Sections
,”
Energy Procedia
,
109
, pp.
471
478
.
19.
Parlak
,
Z.
,
2018
, “
Optimal Design of Wavy Microchannel and Comparison of Heat Transfer Characteristics With Zigzag and Straight Geometries
,”
Heat Mass Transfer
,
54
(
11
), pp.
3317
3328
.
20.
Yuan
,
D.
,
Zhou
,
W.
,
Fu
,
T.
, and
Liu
,
C.
,
2020
, “
Experimental and Numerical Investigation of Heat and Mass Transfer in Non-Uniform Wavy Microchannels
,”
Int. J. Therm. Sci.
,
152
, p.
106320
.
21.
Sharma
,
A.
, and
Khan
,
M. K.
,
2023
, “
Heat Transfer and Flow Characteristics of Varying Curvature Wavy Microchannels
,”
Int. J. Therm. Sci.
,
185
, p.
108096
.
22.
Dai
,
Z.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2015
, “
Impact of Tortuous Geometry on Laminar Flow Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
83
, pp.
382
398
.
23.
Huang
,
H.
,
Wu
,
H.
, and
Zhang
,
C.
,
2018
, “
An Experimental Study on Flow Friction and Heat Transfer of Water in Sinusoidal Wavy Silicon Microchannels
,”
J. Micromech. Microeng.
,
28
(
5
), p.
055003
.
24.
Spizzichino
,
M.
,
Sinibaldi
,
G.
, and
Romano
,
G. P.
,
2020
, “
Experimental Investigation on Fluid Mechanics of Micro-Channel Heat Transfer Devices
,”
Exp. Therm. Fluid Sci.
,
118
, p.
110141
.
25.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Experimental Investigation of Numerically Optimized Wavy Microchannels Created Through Additive Manufacturing
,”
ASME J. Turbomach.
,
140
(
2
), p.
021002
.
26.
Hajialibabaei
,
M.
,
Saghir
,
M. Z.
,
Dincer
,
I.
, and
Bicer
,
Y.
,
2023
, “
Experimental and Numerical Study on Heat Transfer Performance of Wavy Channel Heat Sink With Varying Channel Heights
,”
Int. Commun. Heat Mass Transfer
,
148
, p.
107044
.
27.
Hung
,
T.-C.
, and
Yan
,
W.-M.
,
2012
, “
Effects of Tapered-Channel Design on Thermal Performance of Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1342
1347
.
28.
Hung
,
T.-C.
, and
Yan
,
W.-M.
,
2012
, “
Optimization of a Microchannel Heat Sink With Varying Channel Heights and Widths
,”
Numer. Heat Transfer, Part A
,
62
(
9
), pp.
722
741
.
29.
Dehgan
,
M.
,
Daneshipour
,
M.
,
Valipour
,
M. S.
,
Rafee
,
R.
, and
Saedodin
,
S.
,
2015
, “
Enhancing Heat Transfer in Microchannel Heat Sinks Using Converging Flow Passages
,”
Energy Convers. Manage
,
92
, pp.
244
250
.
30.
Osanloo
,
B.
,
Mohammadi-Ahmar
,
A.
,
Solati
,
A.
, and
Baghani
,
M.
,
2016
, “
Performance Enhancement of the Double-Layered Micro-Channel Heat Sink by Use of Tapered Channels
,”
Appl. Therm. Eng.
,
102
, pp.
1345
1354
.
31.
Chiu
,
H. C.
,
Jang
,
J. H.
,
Yeh
,
H. W.
, and
Wu
,
M. S.
,
2011
, “
The Heat Transfer Characteristics of Liquid Cooling Heatsink Containing Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
34
42
.
32.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X.-D.
, and
Yan
,
W.-M.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
.
33.
Missaggia
,
L. J.
, and
Walpole
,
J. N.
,
1992
, “
A Microchannel Heat Sink with Alternating Directions of Water Flow in Adjacent Channels.
Integrated Optoelectronics for Communication and Processing
,
1582
, pp.
106
111
.
34.
Royne
,
A.
,
Dey
,
C. J.
, and
Mills
,
D. R.
,
2005
, “
Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review
,”
Solar Energy Mater. Solar Cells
,
86
(
4
), pp.
451
483
.
35.
Zhang
,
F.
,
Sundén
,
B.
,
Zhang
,
W.
, and
Xie
,
G.
,
2015
, “
Constructal Parallel-Flow and Counterflow Microchannel Heat Sinks With Bifurcations
,”
Numer. Heat Transfer, Part A
,
68
(
10
), pp.
1087
1105
.
36.
Song
,
J.
,
Liu
,
F.
,
Sui
,
Y.
, and
Jing
,
D.
,
2021
, “
Numerical Studies on the Hydraulic and Thermal Performances of Trapezoidal Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
161
, p.
106755
.
37.
Wang
,
D.
,
Wang
,
D.
,
Hong
,
F.
,
Xu
,
J.
, and
Zhang
,
C.
,
2023
, “
Experimental Study on Flow Boiling Characteristics of R-1233zd (E) in Counter-Flow Interconnected Minichannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
215
, p.
124481
.
38.
Eltaweel
,
A.
,
Baobeid
,
A.
,
Tompkins
,
B.
, and
Hassan
,
I.
,
2016
, “
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
,”
Heat Transfer Summer Conference
,
Washington, DC
,
July 10–14
.
You do not currently have access to this content.