Abstract

In this article, the effect of butanol/diesel and pentanol/diesel blended fuel with different proportions on the energetic, combustion, and emissions parameters of a diesel engine was studied. First, an engine model was established using Diesel-RK software. The modeled engine was a direct injection diesel engine having a fixed compression ratio, injection timing, and speed of 17.5:1, 23 degbTDC, and 1500 rpm, respectively. After that, a set of experiments was conducted using a 5% pentanol and 95% diesel by volume fuel blend maintaining the same operating conditions as the simulation, and the results of the experiment were compared with the numerical result using the same blend. The simulated results were found to be in respectable agreement with experimental findings. The analysis of the simulated results shows that at 100% load using 15% butanol and 85% diesel by volume and 15% pentanol and 85% diesel by volume brake thermal efficiency was increased by 0.96% and 0.8%, respectively. The emission of NOx was reduced by 24.4% and 10.75% on average using butanol and pentanol blends, respectively. The instantaneous heat release rate and ignition delay increase with the higher alcohol–diesel blends, whereas the peak pressure rise and combustion temperature decrease. Smoke emissions were reduced by 3.31–8.75%, and specific particulate matter emissions decreased by 20.9% and 15.07%, respectively, on average with the addition of butanol/pentanol in neat diesel.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Siwale
,
L.
,
Kristóf
,
L.
,
Adam
,
T.
,
Bereczky
,
A.
,
Mbarawa
,
M.
,
Penninger
,
A.
, and
Kolesnikov
,
A.
,
2013
, “
Combustion and Emission Characteristics of N-Butanol/Diesel Fuel Blend in a Turbo-Charged Compression Ignition Engine
,”
Fuel
,
107
, pp.
409
418
.
2.
Doğan
,
O.
,
2011
, “
The Influence of N-Butanol/Diesel Fuel Blends Utilization on a Small Diesel Engine Performance and Emissions
,”
Fuel
,
90
(
7
), pp.
2467
2472
.
3.
Yao
,
M.
,
Wang
,
H.
,
Zheng
,
Z.
, and
Yue
,
Y.
,
2010
, “
Experimental Study of N-Butanol Additive and Multi-Injection on HD Diesel Engine Performance and Emissions
,”
Fuel
,
89
(
9
), pp.
2191
2201
.
4.
Home
, “International Council on Clean Transportation,” Int. Counc. Clean Transp. https://theicct.org/. Accessed January 5, 2024.
5.
National Policy on Biofuels
, “Articles-Ministry of Petroleum and Natural Gas”. https://mopng.gov.in/en/page/11. Accessed January 5, 2024.
6.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Giakoumis
,
E. G.
,
Dimaratos
,
A. M.
, and
Kyritsis
,
D. C.
,
2010
, “
Effects of Butanol–Diesel Fuel Blends on the Performance and Emissions of a High-Speed DI Diesel Engine
,”
Energy Convers. Manage.
,
51
(
10
), pp.
1989
1997
.
7.
Karabektas
,
M.
, and
Hosoz
,
M.
,
2009
, “
Performance and Emission Characteristics of a Diesel Engine Using Isobutanol–Diesel Fuel Blends
,”
Renewable Energy
,
34
(
6
), pp.
1554
1559
.
8.
Al-Hasan
,
M. I.
, and
Al-Momany
,
M.
,
2008
, “
The Effect of Iso-Butanol-Diesel Blends on Engine Performance
,”
Transport
,
23
(
4
), pp.
306
310
.
9.
Zhang
,
Q.
,
Yao
,
M.
,
Zheng
,
Z.
,
Liu
,
H.
, and
Xu
,
J.
,
2012
, “
Experimental Study of N-Butanol Addition on Performance and Emissions With Diesel Low Temperature Combustion
,”
Energy
,
47
(
1
), pp.
515
521
.
10.
Yusri
,
I. M.
,
Mamat
,
R.
,
Akasyah
,
M. K.
,
Jamlos
,
M. F.
, and
Yusop
,
A. F.
,
2019
, “
Evaluation of Engine Combustion and Exhaust Emissions Characteristics Using Diesel/Butanol Blended Fuel
,”
Appl. Therm. Eng.
,
156
, pp.
209
219
.
11.
Xiao
,
J.
,
Jia
,
M.
,
Chang
,
Y.
,
Li
,
Y.
,
Xu
,
Z.
,
Xu
,
G.
,
Liu
,
H.
, and
Wang
,
T.
,
2018
, “
Numerical Optimization and Comparative Study of N-Butanol Concentration Stratification Combustion and n-Butanol/Diesel Reactivity Stratification Combustion for Advanced Compression Ignition (CI) Engine
,”
Fuel
,
213
, pp.
83
97
.
12.
Jamrozik
,
A.
,
Tutak
,
W.
,
Pyrc
,
M.
,
Gruca
,
M.
, and
Kočiško
,
M.
,
2018
, “
Study on Co-Combustion of Diesel Fuel With Oxygenated Alcohols in a Compression Ignition Dual-Fuel Engine
,”
Fuel
,
221
, pp.
329
345
.
13.
Wang
,
Q.
,
Sun
,
W.
,
Guo
,
L.
,
Fan
,
L.
,
Cheng
,
P.
,
Zhang
,
H.
, and
Sun
,
Y.
,
2019
, “
Effects of EGR and Combustion Phasing on the Combustion and Emission Characteristic of Direct-Injection CI Engine Fueled With n-Butanol/Diesel Blends
,”
Energy Procedia
,
160
, pp.
364
371
.
14.
Nour
,
M.
,
Attia
,
A. M. A.
, and
Nada
,
S. A.
,
2019
, “
Combustion, Performance and Emission Analysis of Diesel Engine Fuelled by Higher Alcohols (Butanol, Octanol and Heptanol)/Diesel Blends
,”
Energy Convers. Manage.
,
185
, pp.
313
329
.
15.
Campos-Fernandez
,
J.
,
Arnal
,
J. M.
,
Gomez
,
J.
,
Lacalle
,
N.
, and
Dorado
,
M. P.
,
2013
, “
Performance Tests of a Diesel Engine Fueled With Pentanol/Diesel Fuel Blends
,”
Fuel
,
107
, pp.
866
872
.
16.
Wei
,
L.
,
Cheung
,
C. S.
, and
Huang
,
Z.
,
2014
, “
Effect of N-Pentanol Addition on the Combustion, Performance and Emission Characteristics of a Direct-Injection Diesel Engine
,”
Energy
,
70
, pp.
172
180
.
17.
Li
,
L.
,
Wang
,
J.
,
Wang
,
Z.
, and
Liu
,
H.
,
2015
, “
Combustion and Emissions of Compression Ignition in a Direct Injection Diesel Engine Fueled With Pentanol
,”
Energy
,
80
, pp.
575
581
.
18.
Yilmaz
,
N.
, and
Atmanli
,
A.
,
2017
, “
Experimental Evaluation of a Diesel Engine Running on the Blends of Diesel and Pentanol as a Next Generation Higher Alcohol
,”
Fuel
,
210
, pp.
75
82
.
19.
Ma
,
Y.
,
Huang
,
S.
,
Huang
,
R.
,
Zhang
,
Y.
, and
Xu
,
S.
,
2017
, “
Ignition and Combustion Characteristics of N-Pentanol–Diesel Blends in a Constant Volume Chamber
,”
Appl. Energy
,
185
(Part 1), pp.
519
530
.
20.
Santhosh
,
K.
, and
Kumar
,
G. N.
,
2020
, “
Effect of 1-Pentanol Addition and EGR on the Combustion, Performance and Emission Characteristic of a CRDI Diesel Engine
,”
Renewable Energy
,
145
, pp.
925
936
.
21.
Rajesh kumar
,
B.
, and
Saravanan
,
S.
,
2015
, “
Effect of Exhaust Gas Recirculation (EGR) on Performance and Emissions of a Constant Speed DI Diesel Engine Fueled With Pentanol/Diesel Blends
,”
Fuel
,
160
, pp.
217
226
.
22.
Rajesh Kumar
,
B.
,
Saravanan
,
S.
,
Rana
,
D.
, and
Nagendran
,
A.
,
2016
, “
Combined Effect of Injection Timing and Exhaust Gas Recirculation (EGR) on Performance and Emissions of a DI Diesel Engine Fuelled With Next-Generation Advanced Biofuel – Diesel Blends Using Response Surface Methodology
,”
Energy Convers. Manage.
,
123
, pp.
470
486
.
23.
Rajesh Kumar
,
B.
,
Saravanan
,
S.
,
Rana
,
D.
, and
Nagendran
,
A.
,
2016
, “
A Comparative Analysis on Combustion and Emissions of Some Next Generation Higher-Alcohol/Diesel Blends in a Direct-Injection Diesel Engine
,”
Energy Convers. Manage.
,
119
, pp.
246
256
.
24.
Rajesh Kumar
,
B.
, and
Saravanan
,
S.
,
2016
, “
Effects of Iso-Butanol/Diesel and n​-Pentanol/Diesel Blends on Performance and Emissions of a DI Diesel Engine Under Premixed LTC (Low Temperature Combustion) Mode
,”
Fuel
,
170
, pp.
49
59
.
25.
Atmanli
,
A.
, and
Yilmaz
,
N.
,
2018
, “
A Comparative Analysis of N-Butanol/Diesel and 1-Pentanol/Diesel Blends in a Compression Ignition Engine
,”
Fuel
,
234
, pp.
161
169
.
26.
Zhang
,
Z.-H.
,
Chua
,
S.-M.
, and
Balasubramanian
,
R.
,
2016
, “
Comparative Evaluation of the Effect of Butanol–Diesel and Pentanol–Diesel Blends on Carbonaceous Particulate Composition and Particle Number Emissions From a Diesel Engine
,”
Fuel
,
176
, pp.
40
47
.
27.
Campos-Fernández
,
J.
,
Arnal
,
J. M.
,
Gómez
,
J.
, and
Dorado
,
M. P.
,
2012
, “
A Comparison of Performance of Higher Alcohols/Diesel Fuel Blends in a Diesel Engine
,”
Appl. Energy
,
95
, pp.
267
275
.
28.
Marri
,
V. B.
,
Kotha
,
M. M.
, and
Gaddale
,
A. P. R.
,
2017
, “
Butanol and Pentanol: The Promising Biofuels for CI Engines – A Review
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
1068
1088
.
29.
Rajesh Kumar
,
B.
, and
Saravanan
,
S.
,
2016
, “
Use of Higher Alcohol Biofuels in Diesel Engines: A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
84
115
.
30.
Paul
,
G.
,
Datta
,
A.
, and
Mandal
,
B. K.
,
2014
, “
An Experimental and Numerical Investigation of the Performance, Combustion and Emission Characteristics of a Diesel Engine Fueled With Jatropha Biodiesel
,”
Energy Procedia
,
54
, pp.
455
467
.
31.
Kuleshov
,
A. S.
,
2005
, “Model for Predicting Air-Fuel Mixing, Combustion and Emissions in DI Diesel Engines over Whole Operating Range,” SAE Paper No. 2005-01-2119.
32.
Kuleshov
,
A. S.
,
2007
, “Multi-Zone DI Diesel Spray Combustion Model and Its Application for Matching the Injector Design With Piston Bowl Shape,” SAE Paper No. 2007-01-1908.
33.
Raju
,
D.
,
Elahi M
,
V.
,
Soudagar
,
M.
,
Venu
,
H.
,
Nair
,
J. N.
,
Sreekar Reddy
,
M. B. S.
,
Subba Reddy
,
J.
, et al
,
2022
, “
Experimental Assessment of Diverse Diesel Engine Characteristics Fueled With an Oxygenated Fuel Added Lemon Peel Biodiesel Blends
,”
Fuel
,
324
(Part A), p.
124529
.
34.
Datta
,
A.
, and
Mandal
,
B. K.
,
2017
, “
Engine Performance, Combustion and Emission Characteristics of a Compression Ignition Engine Operating on Different Biodiesel-Alcohol Blends
,”
Energy
,
125
, pp.
470
483
.
35.
Raju
,
V. D.
,
Venu
,
H.
,
Subramani
,
L.
,
Kishore
,
P. S.
,
Prasanna
,
P. L.
, and
Kumar
,
D. V.
,
2020
, “
An Experimental Assessment of Prospective Oxygenated Additives on the Diverse Characteristics of Diesel Engine Powered With Waste Tamarind Biodiesel
,”
Energy
,
203
, p.
117821
.
36.
Rajak
,
U.
,
Nashine
,
P.
,
Singh
,
T. S.
, and
Verma
,
T. N.
,
2018
, “
Numerical Investigation of Performance, Combustion and Emission Characteristics of Various Biofuels
,”
Energy Convers. Manage.
,
156
, pp.
235
252
.
37.
No
,
S.-Y.
,
2016
, “
Application of Biobutanol in Advanced CI Engines – A Review
,”
Fuel
,
183
, pp.
641
658
.
38.
Fiveland
,
S. B.
, and
Assanis
,
D. N.
,
2000
, “A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies,” SAE Paper No. 2000-01-0332.
39.
Mcaulay
,
K. J.
,
Wu
,
T.
,
Chen
,
S. K.
,
Borman
,
G. L.
,
Myers
,
P. S.
, and
Uyehara
,
O. A.
,
1965
, “Development and Evaluation of the Simulation of the Compression-Ignition Engine,” SAE Paper No. 650451.
40.
Chen
,
S. K.
, and
Flynn
,
P. F.
,
1965
, “Development of a Single Cylinder Compression Ignition Research Engine,” SAE Paper No. 650733.
41.
Kuleshov
,
A. S.
,
2009
, “
Multi-Zone DI Diesel Spray Combustion Model for Thermodynamic Simulation of Engine With PCCI and High EGR Level
,”
SAE Int. J. Engines
,
2
(
1
), p.
2009-01-1956
.
42.
Woschni
,
G.
,
1967
, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Paper No. 670931.
43.
Heywood
,
J. B.
,
1988
,
Combustion Engine Fundamentals
,
Mc Graw Hill International Editions
,
Singapore
.
44.
Kuleshov
,
A. S.
,
2006
, “Use of Multi-Zone DI Diesel Spray Combustion Model for Simulation and Optimization of Performance and Emissions of Engines With Multiple Injection,” SAE Paper No. 2006-01-1385.
45.
Alkidas
,
A. C.
,
1984
, “Relationships Between Smoke Measurements and Particulate Measurements,” SAE Paper No. 840412.
46.
Gautam
,
M.
, and
Martin
,
D. W.
,
2000
, “
Combustion Characteristics of Higher-Alcohol/Gasoline Blends
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
214
(
5
), pp.
497
511
.
47.
An
,
H.
,
Yang
,
W. M.
,
Maghbouli
,
A.
,
Chou
,
S. K.
, and
Chua
,
K. J.
,
2013
, “
Detailed Physical Properties Prediction of Pure Methyl Esters for Biodiesel Combustion Modeling
,”
Appl. Energy
,
102
, pp.
647
656
.
48.
Lapuerta
,
M.
,
García-Contreras
,
R.
,
Campos-Fernández
,
J.
, and
Dorado
,
M. P.
,
2010
, “
Stability, Lubricity, Viscosity, and Cold-Flow Properties of Alcohol−Diesel Blends
,”
Energy Fuels
,
24
(
8
), pp.
4497
4502
.
49.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O’Connell
,
J. P.
,
2001
,
Properties of Gases and Liquids
,
McGraw-Hill Education
,
New York
.
50.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
51.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
52.
Gnanasekaran
,
S.
,
Saravanan
,
N.
, and
Ilangkumaran
,
M.
,
2016
, “
Influence of Injection Timing on Performance, Emission and Combustion Characteristics of a DI Diesel Engine Running on Fish Oil Biodiesel
,”
Energy
,
116
(Part 1), pp.
1218
1229
.
53.
Atmanlı
,
A.
,
İleri
,
E.
, and
Yüksel
,
B.
,
2014
, “
Experimental Investigation of Engine Performance and Exhaust Emissions of a Diesel Engine Fueled With Diesel – n-Butanol – Vegetable Oil Blends
,”
Energy Convers. Manage.
,
81
, pp.
312
321
.
54.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Papagiannakis
,
R. G.
, and
Kyritsis
,
D. C.
,
2011
, “
Combustion Heat Release Analysis of Ethanol or N-Butanol Diesel Fuel Blends in Heavy-Duty DI Diesel Engine
,”
Fuel
,
90
(
5
), pp.
1855
1867
.
55.
Srivastava
,
D. K.
,
Agarwal
,
A. K.
, and
Gupta
,
T.
,
2009
, “Particulate Characterization of Biodiesel Fuelled Compression Ignition Engine,” SAE Paper No. 2009-28-0018.
56.
Mueller
,
C. J.
,
Pitz
,
W. J.
,
Pickett
,
L. M.
,
Martin
,
G. C.
,
Siebers
,
D. L.
, and
Westbrook
,
C. K.
,
2003
, “Effects of Oxygenates on Soot Processes in DI Diesel Engines: Experiments and Numerical Simulations,” SAE Paper No. 2003-01-1791.
57.
Tree
,
D. R.
, and
Svensson
,
K. I.
,
2007
, “
Soot Processes in Compression Ignition Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
272
309
.
58.
Su
,
J.
,
Zhu
,
H.
, and
Bohac
,
S. V.
,
2013
, “
Particulate Matter Emission Comparison From Conventional and Premixed Low Temperature Combustion With Diesel, Biodiesel and Biodiesel–Ethanol Fuels
,”
Fuel
,
113
, pp.
221
227
.
You do not currently have access to this content.