This paper presents a three-dimensional numerical framework based on lattice Boltzman method combined with the energy equation for predicting the thermal properties of saturated fiber networks. Heat transfer in fiber suspensions during hot pressing in paper making process is investigated. The effects of efficient preheating on overall energy savings are discussed. The accuracy of the analytical solution based on the assumption of semi-infinite solid body is also investigated. The results show that the thermal properties change significantly depending on the wood fiber types. The effective thermal conductivities of fiber suspensions for three different fiber types are calculated. The predictions compare well with existing experimental and analytical data.

1.
Maloney
,
T. C.
, 2000, “
On the Pore Structure and Dewatering Properties of the Pulp Fiber Cell Wall
,”
Acta Polytechnica Scandinavica, Chemical Technology Series
,
275
, pp.
2
45
. 0002-7820
2.
Back
,
E. L.
, and
Andersson
,
L. I.
, 1993, “
Effect of Temperature on Wet-Web Strength Properties
,”
Tappi J.
0734-1415,
76
(
5
), pp.
164
172
.
3.
Lindsay
,
J. D.
, 1990, “
New Drying and Dewatering Processes in Papermaking
,”
IPST Technical Paper Series
, United States.
4.
Walker
,
K.
, 1990, “
Advances in Hot-Pressing Technology
,”
Tappi J.
0734-1415,
73
(
8
), pp.
99
101
.
5.
Crouse
,
J. W.
,
Woo
,
Y. D.
, and
Sprague
,
C. H.
, 1989, “
Delamination—Stumbling Block to Implementing Impulse Drying Technology for Linerboard
,”
Tappi J.
0734-1415,
72
(
10
), pp.
211
215
.
6.
Krook
,
R.
, and
Stenstrom
,
S.
, 1998, “
Temperature Gradients and Heat Flux Measurements in Hot Pressing of Paper
,”
Experimental Heat Transfer
,
11
(
3
), pp.
221
240
.
7.
Busker
,
L. H.
, and
Cronin
,
D. C.
, 1984, “
The Relative Importance of Wet Press Variables in Water Removal
,”
Pulp & Paper Canada
,
85
(
6
), pp.
87
101
.
8.
Patterson
,
T.
,
Strand
,
M. A.
, and
Orloff
,
D. I.
, 1996, “
An Apparatus for the Evaluation of Web-Heating Technologies: Development, Capabilities, Preliminary Results, and Potential Uses
,”
Tappi J.
0734-1415,
79
(
3
), pp.
269
278
.
9.
Suleiman
,
B. M.
,
Larfeldt
,
J.
,
Leckner
,
B.
, and
Gustavssor
,
M.
, 1999, “
Thermal Conductivity and Diffusivity of Wood
,”
Wood Sci. Technol.
0043-7719,
33
(
6
), pp.
465
473
.
10.
Plumb
,
O. A.
,
Spolek
,
G. A.
, and
Olmstead
,
B. A.
, 1985, “
Heat and Mass Transfer in Wood During Drying
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
9
), pp.
1669
1678
.
11.
Paulapuro
,
H.
, and
Nordman
,
L.
, 1991, “
Wet Pressing. History and Future Trends
,”
Pulp & Paper Canada
,
92
(
1
), pp.
41
50
.
12.
Carvalho
,
L. M. H.
, and
Costa
,
C. A. V.
, 1998, “
Modeling and Simulation of the Hot-Pressing Process in the Production of Medium Density Fiberboard (MDF)
,”
Chem. Eng. Commun.
0098-6445,
170
, pp.
1
21
.
13.
Pereira
,
C.
,
Carvalho
,
L. M. H.
, and
Costa
,
C. A. V.
, 2006, “
Modeling the Continuous Hot-Pressing of MDF
,”
Wood Sci. Technol.
0043-7719,
40
(
4
), pp.
308
326
.
14.
Ribeiro
,
H. A.
, and
Costa
,
C. A. V.
, 2007, “
Modeling and Simulation of the Hot-Pressing Process in Paper Production: A Heat- and Mass-Transfer Analysis
,”
Ind. Eng. Chem. Res.
0888-5885,
46
(
24
), pp.
8205
8219
.
15.
Ahrens
,
F. W.
, 1983, “
Heat Transfer Aspects of Hot Surface Drying at High Temperature and Mechanical Loading
,”
J. Pulp Pap. Sci.
0826-6220,
9
(
3
), pp.
79
83
.
16.
Lindsay
,
J. D.
,
Haberl
,
A.
, and
Poirier
,
D.
, 1992, “
Potential for Higher Drying Rates in Cylinder Drying of Paper
,”
IPST Technical Paper Series
, United States.
17.
Nilsson
,
J.
, and
Stenstrom
,
S.
, 2001, “
Modelling of Heat Transfer in Hot Pressing and Impulse Drying of Paper
,”
Drying Technol.
0737-3937,
19
(
10
), pp.
2469
2485
.
18.
Zombori
,
B. G.
,
Kamke
,
F. A.
, and
Watson
,
L. T.
, 2003, “
Simulation of the Internal Conditions During the Hot-Pressing Process
,”
Wood Fiber Sci.
0735-6161,
35
(
1
), pp.
2
23
.
19.
Dai
,
C.
, and
Yu
,
C.
, 2004, “
Heat and Mass Transfer in Wood Composite Panels During Hot-Pressing: Part I. A Physical-Mathematical Model
,”
Wood Fiber Sci.
0735-6161,
36
(
4
), pp.
585
597
.
20.
Dai
,
C.
,
Yu
,
C.
, and
Zhou
,
X.
, 2005, “
Heat and Mass Transfer in Wood Composite Panels During Hot Pressing. Part II. Modeling Void Formation and Mat Permeability
,”
Wood Fiber Sci.
0735-6161,
37
(
2
), pp.
242
257
.
21.
Thoemen
,
H.
, and
Humphrey
,
P. E.
, 2006, “
Modeling the Physical Processes Relevant During Hot Pressing of Wood-Based Composites. Part I. Heat and Mass Transfer
,”
Holz Roh-Werkst.
0018-3768,
64
(
1
), pp.
1
10
.
22.
Thoemen
,
H.
,
Walther
,
T.
, and
Wiegmann
,
A.
, 2008, “
3D Simulation of Macroscopic Heat and Mass Transfer Properties From the Microstructure of Wood Fibre Networks
,”
Compos. Sci. Technol.
0266-3538,
68
(
3–4
), pp.
608
616
.
23.
Steinhagen
,
H. P.
, 1977, “
Thermal Conductive Properties of Wood, Green or Dry, From Minus 40 Degree to Plus 100 Degree C: A Literature Review
,” USDA Forest Service General Technical Report FPL-9, Forest Products Laboratory, Madison, WI.
24.
Hu
,
H. H.
,
Joseph
,
D. D.
, and
Crochet
,
M. J.
, 1992, “
Direct Simulation of Fluid Particle Motions
,”
Theor. Comput. Fluid Dyn.
0935-4964,
3
(
5
), pp.
285
306
.
25.
Chen
,
H.
,
Chen
,
S.
, and
Matthaeus
,
W. H.
, 1992, “
Recovery of Navier–Stokes Equations Using a Lattice-Gas Boltzmann Method
,”
Phys. Rev. A
1050-2947,
45
(
8
), pp.
5339
5342
.
26.
McNamara
,
G. R.
, and
Zanetti
,
G.
, 1988, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
0031-9007,
61
(
20
), pp.
2332
2335
.
27.
Aidun
,
C. K.
,
Lu
,
Y.
, and
Ding
,
E. J.
, 1998, “
Direct Analysis of Particulate Suspensions With Inertia Using the Discrete Boltzmann Equation
,”
J. Fluid Mech.
0022-1120,
373
(
1
), pp.
287
311
.
28.
Khiabani
,
R. H.
,
Joshi
,
Y.
, and
Aidun
,
C. K.
, 2010, “
Heat Transfer in Microchannels With Suspended Solid Particles: Lattice-Boltzmann Based Computations
,”
ASME J. Heat Transfer
0022-1481,
132
(
4
), p.
041003
.
29.
Khiabani
,
R. H.
,
Joshi
,
Y.
, and
Aidun
,
C. K.
, 2010, “
Thermal Properties of Particulate TIMS in Squeeze Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
19–20
), pp.
4039
4046
.
30.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Longman Ltd.
,
London
.
31.
Hou
,
S.
,
Zou
,
Q.
,
Chen
,
S.
, and
Doolen
,
G.
, 1995, “
Simulation of Cavity Flow by the Lattice Boltzmann Method
,”
J. Comput. Phys.
0021-9991,
118
(
2
), pp.
329
347
.
32.
Aidun
,
C. K.
, and
Clausen
,
J. R.
, 2010, “
Lattice-Boltzmann Method for Complex Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
42
, pp.
439
472
.
33.
Ding
,
E. -J.
, and
Aidun
,
C. K.
, 2003, “
Extension of the Lattice-Boltzmann Method for Direct Simulation of Suspended Particles Near Contact
,”
J. Stat. Phys.
0022-4715,
112
(
3–4
), pp.
685
708
.
34.
Clausen
,
J. R.
, and
Aidun
,
C. K.
, 2009, “
Galilean Invariance in the Lattice-Boltzmann Method and Its Effect on the Calculation of Rheological Properties in Suspensions
,”
Int. J. Multiphase Flow
0301-9322,
35
(
4
), pp.
307
311
.
35.
MacMeccan
,
R. M.
,
Clausen
,
J. R.
,
Neitzel
,
G. P.
, and
Aidun
,
C. K.
, 2009, “
Simulating Deformable Particle Suspensions Using a Coupled Lattice-Boltzmann and Finite-Element Method
,”
J. Fluid Mech.
0022-1120,
618
, pp.
13
39
.
36.
Wu
,
J.
, and
Aidun
,
C. K.
, 2009, “
Simulating 3D Deformable Particle Suspensions Using Lattice Boltzmann Method With Discrete External Boundary Force
,”
Int. J. Numer. Methods Fluids
0271-2091,
62
(
7
), pp.
765
783
.
You do not currently have access to this content.