The contact temperature plays an important role in the polishing process, which essentially is a surface contact abrasion process. This paper reports a contact temperature model to predict the temperature rise of both the abrasive-workpiece and pad-workpiece interfaces in a polishing process. In this analysis, the forces acting on an abrasive particle and an asperity of the pad are derived from a mechanistic analysis of abrasive-workpiece and pad-workpiece contact. Our results elucidate that polishing with a rigid, smooth plate is a special case of our purposed model. Theoretical predictions indicate that the temperature rise of abrasive-workpiece contact increases with an increase in particle size and density of particles, hardness of workpiece, hardness of pad, and with a decrease in thermal conductivity of workpiece. The temperature of pad-workpiece contact increases with an increase in hardness of pad and surface roughness of pad, and with a decrease in thermal conductivity of workpiece. The contact temperature rise of the pad-workpiece interface is independent of the hardness of workpiece. For a metal polishing process, the maximum contact temperature occurs at the pad-workpiece contact point for small abrasive particles and rough polishing pad with high hardness.

1.
Rabinowicz
,
E. C.
,
1968
, “
Polishing
,”
Sci. Am.
,
218
(
6
), pp.
91
99
.
2.
Bhushan, B., 1999, Principles and Applications of Tribology, Wiley & Sons Press.
3.
Rabinowicz
,
E.
,
Dunn
,
L. A.
, and
Russell
,
P. G.
,
1961
, “
A Study of Abrasive Wear Under Three-Body Conditions
,”
Wear
,
4
, pp.
345
355
.
4.
Gates
,
J. D.
,
1998
, “
Two-Body and Three-Body Abrasion: A Critical Discussion
,”
Wear
,
214
, pp.
139
146
.
5.
Stachowiak
,
G. B.
, and
Stachowiak
,
G. W.
,
2001
, “
The Effects of Particle Characteristics on Three-Body Abrasive Wear
,”
Wear
,
249
, pp.
201
207
.
6.
Chauhan
,
R.
,
Ahn
,
Y.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
1993
, “
Role of Indentation Fracture in Free Abrasive Machining of Ceramics
,”
Wear
,
162–164
, pp.
246
257
.
7.
Shan
,
L.
,
Levert
,
J.
,
Meads
,
L.
,
Danyluk
,
S.
, and
Tichy
,
J.
,
2000
, “
Interfacial Fluid Mechanics and Pressure Prediction in Chemical Mechanical Polishing
,”
ASME J. Tribol.
,
122
(
3
), pp.
539
543
.
8.
Jeng
,
Y. R.
, and
Tsai
,
H. R.
,
2002
, “
Tribological Analysis on Powder Slurry in Chemical Mechanical Polishing
,”
J. Phys. D
,
35
, pp.
1585
1591
.
9.
Jeng
,
Y. R.
, and
Tsai
,
H. R.
,
2003
, “
Improved Model of Wafer/Pad Powder Slurry for CMP
,”
J. Electrochem. Soc.
,
150
, pp.
348
354
.
10.
Jeng
,
Y. R.
, and
Huang
,
P. Y.
,
2003
, “
Tribological Analysis of Chemical Mechanical Polishing With Partial Asperity Contact
,”
J. Electrochem. Soc.
,
150
, pp.
630
637
.
11.
Bulsara
,
V. H.
,
Ahn
,
Y.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
1997
, “
Polishing and Lapping Temperatures
,”
ASME J. Tribol.
,
119
, pp.
163
170
.
12.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominal Flat Surface
,”
Proc. R. Soc. London, Ser. A
,
A295
, pp.
300
319
.
13.
Abbott
,
E. J.
, and
Firestone
,
F. A.
,
1933
, “
Specifying Surface Quality-A Method Based on Accurate Measurement and Comparison
,”
Institution of Mechanical Engineers
,
55
, p.
569
569
.
14.
Pullen
,
J.
, and
Williamson
,
J. B. P.
,
1972
, “
On the Plastic Contact of Rough Surface
,”
Proc. R. Soc. London
,
A327
, pp.
157
173
.
15.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surface
,”
ASME J. Tribol.
,
109
, pp.
257
263
.
16.
Horng
,
J. H.
,
1998
, “
An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surface
,”
ASME J. Tribol.
,
120
, pp.
82
88
.
17.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
, pp.
86
93
.
18.
Jeng
,
Y. R.
, and
Wang
,
P. Y.
,
2003
, “
An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation
,”
ASME J. Tribol.
,
125
, pp.
232
240
.
19.
Blok
,
H.
,
1937
, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions
,”
Inst. Mech. Eng., Proc. General Discussion on Lubrication
,
2
, pp.
222
235
.
20.
Jaeger
,
J. C.
,
1972
, “
Moving Sources of Heat and the Temperature at the Sliding Surfaces
,”
Proc. Roy. Soc. NSW
,
66
, pp.
203
224
.
21.
Archard
,
J. F.
,
1959
, “
The Temperature of Rubbing Surfaces
,”
Wear
,
2
, pp.
438
455
.
22.
Francis
,
H. A.
,
1971
, “
Interfacial Temperature Distribution Within a Sliding Hertzian Contact
,”
ASLE Trans.
,
14
, pp.
41
54
.
23.
Kuhlmann-Wilsdorf
,
D.
,
1987
, “
Temperatures at Interfacial Contact Spots: Dependence on Velocity and on Role Reversal of Two Materials in Sliding Contact
,”
ASME J. Tribol.
,
109
, pp.
321
329
.
24.
McCool
,
J. I.
,
1988
, “
The Distribution of Microcontact Area, Load, Pressure, and Flash Temperature Under the Greenwood-Williamson Model
,”
ASME J. Tribol.
,
110
, pp.
106
111
.
25.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
, pp.
167
174
.
26.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press.
27.
Xie
,
Y.
, and
Bhushan
,
B.
,
1996
, “
Effects of Particle Size, Polishing Pad and Contact Pressure in Free Abrasive Polishing
,”
Wear
,
200
, pp.
281
295
.
You do not currently have access to this content.