A new method is developed in the present study to determine the elastoplastic regime of a spherical asperity in terms of the interference of two contact surfaces. This method provides an efficient way to solve the problem of discontinuities often present in the reported solutions for the contact load and area or the gradients of these parameters obtained at either the inception or the end of the elastoplastic regime. The well-established solutions for the elastic regime and experimental data of metal materials using indentation tests are provided as the references to determine the errors of these contact parameters due to the use of the finite-element method. These numerical errors provide the basis to adjust the contact area and contact load of a rigid sphere in contact with a flat such that the dimensionless mean contact pressure PaveY (Y: the yielding strength) and the dimensionless contact load FpcFec (Fec, Fpc: the contact loads corresponding to the inceptions of the elastoplastic and fully plastic regimes, respectively) reaches the criteria arising at the inception of the fully plastic regime, which are available from the reports of the indentation tests for metal materials. These two criteria are however not suitable for the present case of a rigid flat in contact with a deformable sphere. In the case of a rigid flat in contact with a deformable sphere, the proportions in the adjustments of these contact parameters are given individually the same as those arising in the indentation case. The elastoplastic regime for each of these two contact mechanisms can thus be determined independently. By assuming that the proportion of adjustment in the elastoplastic regime is a linear function, the discontinuities appearing in these contact parameters are absent from the two ends of the elastoplastic regime in the present study. These results are presented and compared with the published results.

1.
Timoshenko
,
S.
,
Goodier
,
J. N.
, 1951,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Flat Surface
,”
Proc. R. Soc. London, Ser. A
1364-5021,
259
, pp.
300
.
3.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1967, “
The Elastic Contact of Rough Sphere
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
153
159
.
4.
Hisakado
,
S.
, 1974, “
Effects of Surfaces Roughness on Contact Between Solid Surfaces
,”
Wear
0043-1648,
28
, pp.
217
234
.
5.
McCool
,
J. I.
, 1986, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
0043-1648,
107
, pp.
37
60
.
6.
Abbott
,
E. J.
, and
Firestone
,
F. A.
, 1933, “
Specifying Surfaces Quality—A Method Based on Accurate Measurement and Comparison
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
55
, pp.
569
.
7.
Pullen
,
J.
, and
Williamson
,
J. B. P.
, 1972, “
On the Plastic Contact of Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
327
, pp.
159
173
.
8.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
, pp.
257
263
.
9.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
, pp.
86
93
.
10.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
11.
Kucharski
,
S.
,
Klimczak
,
T.
,
Polijaniuk
,
A.
, and
Kaczmarek
,
J.
, 1994, “
Finite-Elements Model for the Contact of Rough Surfaces
,”
Wear
0043-1648,
177
, pp.
1
13
.
12.
Liu
,
G.
,
Zhu
,
J.
, and
Wang
,
Q. J.
, 2001, “
Elasto-Plastic Contact of Rough Surfaces
,”
Tribol. Trans.
1040-2004,
44
, pp.
437
443
.
13.
Faulkner
,
A.
, and
Arnell
,
R. D.
, 2000, “
The Development of a Finite Element Model to Simulate the Sliding Interaction Between Two, Three-Dimensional, Elastoplastic, Hemispherical Asperities
,”
Wear
0043-1648,
242
, pp.
114
122
.
14.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
15.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
1040-2004,
46
, pp.
383
390
.
16.
Francis
,
H. A.
, 1976, “
Phenomenological Analysis of Plastic Spherical Indentation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
272
281
.
17.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
, 1993, “
Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
829
841
.
18.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
, 1999, “
Spherical Indentation of Elastic-Plastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
2707
2728
.
19.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
, 2000, “
Frictionless Indentation of Dissimilar Elastic-Plastic Spheres
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
7071
7091
.
20.
Jackson
,
R. L.
, and
Green
,
I.
, 2005, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
0742-4787,
127
, pp.
343
354
.
21.
Etsion
,
I.
,
Levinson
,
O.
,
Halperin
,
G.
, and
Varenberg
,
M.
, 2005, “
Experimental Investigation of the Elastic-Plastic Contact Area and Static Friction of a Sphere on Flat
,”
ASME J. Tribol.
0742-4787,
127
, pp.
47
50
.
22.
Johnson
,
K. L.
, 1968, “
An Experimental Determination of the Contact Stresses Between Plastically Deformed Cylinders and Spheres
,” in
Engineering Plasticity
,
Cambridge University
,
Cambridge
, pp.
341
361
.
You do not currently have access to this content.