Foil bearings are a key enabling technology for advanced and oil-free rotating machinery. In certain applications, they provide a level of performance that is difficult or impossible to match with other technologies. A number of reasonably successful analytical techniques to predict bearing load capacity, power loss, and stiffness have been developed. Prediction of damping, however, has remained problematic. This work presents a fresh look at the damping problem. Using a simplified representation of a bump foil, this work considers explicitly adding the load dependence of the friction force. This approach is shown to provide a good match to previous experimental data. Parametric study results for the various model parameters are presented to examine the characteristics of this model. It is concluded that the load-dependent frictional force is important to consider for a bump foil damping model.

1.
Blok
,
H.
, and
Van Rossum
,
J. J.
, 1953, “
The Foil Bearing—A New Departure in Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
0022-2305,
9
, pp.
316
330
.
2.
Agrawal
,
G. L.
, 1997, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 97-GT-347.
3.
Dellacorte
,
C.
,
Zaldana
,
A. R.
, and
Radil
,
K.
, 2004, “
A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery
,”
STLE Tribol. Trans.
1040-2004,
126
, pp.
200
207
.
4.
Heshmat
,
H.
,
Walton
,
J. F.
,
Dellacorte
,
C.
, and
Valco
,
M.
, 2000, “
Oil-Free Turbocharger Demonstration Paves Way to Gas Turbine Engine Applications
,” ASME Paper No. 2000-GT-620.
5.
Swanson
,
E. E.
,
Heshmat
,
H.
, and
Shin
,
J. S.
, 2002, “
The Role of High Performance Foil Bearings in an Advanced, Oil-Free, Integral Permanent Magnet Motor Driven, High-Speed Turbo-Compressor Operating Above the First Bending Critical Speed
,” ASME Paper No. GT-2002-30579.
6.
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2003, “
Oil-Free Turbomachinery Technology for Regional Jet, Rotorcraft and Supersonic Business Jet Propulsion Engines
,” AIAA Paper No. ISABE-2003-1182.
7.
Oh
,
K. P.
, and
Rohde
,
S. M.
, 1976, “
Theoretical Investigation of the Multileaf Journal Bearing
,”
ASME J. Appl. Mech.
0021-8936,
43
, pp.
237
242
.
8.
Walowit
,
J. A.
,
Murray
,
S. F.
,
McCabe
,
J. T.
,
Arwas
,
E. B.
, and
Moyer
,
T.
, 1973, “
Gas Lubricated Foil Bearing Technology Development for Propulsion and Power Systems
,” Report No. AFAPL-TR-73-92,
U.S. Air Force
.
9.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1992, “
Compliant Foil Bearing Structural Stiffness Analysis: Pt 1—Theoretical-Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
0742-4787,
114
, pp.
394
400
.
10.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1994, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearings: Parametric Studies
,”
STLE Tribol. Trans.
1040-2004,
37
, pp.
455
462
.
11.
Ku
,
C. P. R.
, 1994, “
Dynamic Structural-Properties of Compliant Foil Thrust-Bearings—Comparison Between Experimental and Theoretical Results
,”
ASME J. Tribol.
0742-4787,
116
, pp.
70
75
.
12.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1994, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearings—Theoretical Considerations
,”
STLE Tribol. Trans.
1040-2004,
37
, pp.
525
533
.
13.
Heshmat
,
C. A.
,
Xu
,
D. S.
, and
Heshmat
,
H.
, 2000, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
0742-4787,
122
, pp.
199
204
.
14.
Peng
,
J.-P.
, and
Carpino
,
M.
, 1993, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
115
, pp.
20
27
.
15.
Peng
,
J.-P.
and
Carpino
,
M.
, 1994, “
Coulomb Friction Damping Effects in Elastically Supported Gas Foil Bearings
,”
STLE Tribol. Trans.
1040-2004,
37
, pp.
91
98
.
16.
Peng
,
J.-P.
, and
Carpino
,
M.
, 1997, “
Finite Element Approach to the Prediction of Foil Bearing Rotor Dynamic Coefficients
,”
ASME J. Tribol.
0742-4787,
119
, pp.
85
90
.
17.
Carpino
,
M.
, and
Talmage
,
G.
, 2003, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
STLE Tribol. Trans.
1040-2004,
46
, pp.
560
565
.
18.
Iordanoff
,
I.
,
Hermal
,
P.
, and
Stefan
,
P.
, 1995, “
Optimization of Air Compliant Thrust Bearings
,”
Lubricants and Lubrication, Proc. 21th Leeds-Lyon Symposium on Tribology
.
D.
Dowson
,
C. M.
Taylor
, and
T. H. C.
Childs
, eds., September 6–9,
Elsevier
,
Leeds, UK
, pp.
283
289
.
19.
Iordanoff
,
I.
,
Hermal
,
P.
, and
Stefan
,
P.
, 1996, “
Effect of Compliance on the Extend of Optimum Compliant Air Thrust Bearing Operating Range
,”
The Third Body Concept, Proc 22nd Leeds/Lyon Symposium on Tribology
.
D.
Dowson
, ed.,
Lyon, France
, September 5–8,
Elsevier
,
Leeds, UK
, pp.
453
460
.
20.
Iordanoff
,
I.
, 1999, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
0742-4787,
121
, pp.
816
822
.
21.
Peng
,
Z.-C.
, and
Khonsari
,
M.
, 2004, “
On the Limiting Load-Carrying Capacity of Foil Bearings
,”
ASME J. Tribol.
0742-4787,
126
, pp.
817
818
.
22.
Peng
,
Z.-C.
, and
Khonsari
,
M.
, 2004, “
Hydrodynamic Analysis of Compliant Foil Bearings with Compressible Air Flow
,”
ASME J. Tribol.
0742-4787,
126
, pp.
542
546
.
23.
San Andres
,
L.
, 1995, “
Turbulent-Flow Foil Bearings for Cryogenic Applications
,”
ASME J. Tribol.
0742-4787,
117
, pp.
185
195
.
24.
Kim
,
T. H.
, and San
Andres
,
L.
, 2005, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,” ASME Paper No. GT2005-68486.
25.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1993, “
Compliant Foil Bearing Structural Stiffness Analysis. 2. Experimental Investigation
,”
ASME J. Tribol.
0742-4787,
115
, pp.
364
369
.
26.
Heshmat
,
H.
, and
Ku
,
C. P. R.
, 1994, “
Structural Damping of Self-Acting Compliant Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
116
, pp.
76
82
.
27.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1994, “
Effects of Static Load on Dynamic Structural Properties in a Flexible Supported Foil Journal Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
70
75
.
28.
Salehi
,
M.
, and
Heshmat
,
H.
, 2002, “
Frictional Dampers Dynamic Characterization—Theory and Experiments
,”
Boundary and Mixed Lubrication: Science and Applications, Proceedings of the 28th Leeds-Lyon Symposium on Tribology
.
D.
Dowson
,
M.
Priest
, and
G.
Dalmaz
, eds., Amsterdam, Netherlands, September 4–7,
Elsevier
,
Leeds, UK
, pp.
515
526
.
29.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
, 2003, “
On the Frictional Damping Characterization of Compliant Bump Foils
,”
ASME J. Tribol.
0742-4787,
125
, pp.
804
813
.
30.
Rubio
,
D.
, and
Andres
,
L. S.
, 2004, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,” ASME Paper No. GT2005-68486.
31.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
III
, 2004, “
Advancements in the Structural Stiffness and Damping of a Large Compliant Foil Journal Bearing: An Experimental Study
,” ASME Paper No. GT2004-53860.
32.
Rubio
,
D.
, and
San Andres
,
L.
, 2005, “
Structural Stiffness, Dry-Friction Coefficient and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,” ASME Paper No. GT2005-68384.
33.
Thomson
,
W. T.
, 1988,
Theory of Vibration with Applications
,
Prentice Hall
,
Englewood Cliffs, NJ
.
34.
Whiteman
,
W. E.
, and
Ferri
,
A. A.
, 1996, “
Displacement-Dependent Dry Friction Damping of a Beam-Like Structure
,”
J. Sound Vib.
0022-460X,
198
, pp.
313
329
.
35.
Menq
,
C.-H.
,
Griffin
,
J. H.
, and
Bielak
,
J.
, 1986, “
The Influence of a Variable Normal Load on the Forced Vibration of a Frictionally Damped Structure
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
108
, pp.
300
305
.
36.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C. G.
, and
Prajogo
,
T.
, 2000, “
Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
675
686
.
37.
Lampaert
,
V.
,
Swevers
,
J.
, and
Al-Bender
,
F.
, 2002, “
Modification of the Leuven Integrated Friction Model Structure
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
683
687
.
38.
Lampaert
,
V.
,
Al-Bender
,
F.
, and
Swevers
,
J.
, 2003, “
A Generalized Maxwell-Slip Friction Model Appropriate for Control Purposes
,”
Proceedings of the IEEE Intl. Conf. on Physics and Control
, St. Petersburg, Russia, August 20–22.
39.
Narayanan
,
S.
, and
Sekar
,
P.
, 1994, “
Bifurcation and Chaos of Coupled Systems by Fast Incremental Harmonic Balancing
,”
Nonlinearity and Chaos in Engineering Dynamics
.
J. M. T.
Thompson
and
S. R.
Bishop
, eds.,
John Wiley
,
New York
, pp.
365
375
.
40.
Petrov
,
E. P.
, 2004, “
Method for Direct Parametric Analysis of Nonlinear Forced Response of Bladed Discs with Friction Contact Interfaces
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
654
662
.
41.
Mathworks
, 2005,
Optimization Toolbox for Use with Matlab: User’s Guide
,
Mathworks
, Natick, MA.
42.
Walton
,
J. F.
II
, and
Heshmat
,
H.
, 2002, “
Application of Foil Bearings to Turbomachinery Including Vertical Operation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
1032
1041
.
You do not currently have access to this content.