To expand the engineering application of stainless steel as tribological material, it is important to study the tribological interaction of the nitrided layer with lubricating additives. The friction and wear properties of plasma nitrided 1Cr18Ni9Ti stainless steel were investigated under lubricated conditions on an Optimol Schwinyung Reibung Versch oscillating friction and wear tester. The lubrication oil was 1,1,1-trihydroxymethylpropyl trioctoate containing zinc dibutyl dithiophosphate, bismuth dibutyl dithiophosphate, and bismuth N, N-dibutyldithiocarbamate as the antiwear and extreme pressure additives. The variations in the nitrided stainless steel and the unnitrided one under the tribological action of the additives were contrasted and the tribological chemical interaction between the nitrided layer and the additives was revealed. The results showed that the selected additives had good synergetic effect with the nitrided layer on tribological performance and the bismuth containing additive had better friction-reducing and antiwear abilities than the zinc containing additive. Meanwhile, under the effect of these additives, the N/(Fe+Cr) ratio rose and the Fe/Cr ratio decreased in the nitrided layer, while the Fe/Cr ratio in the unnitrided stainless steel varied little. Three main elements, N, Cr, and Fe, in nitrided layer had different actions with the additives and contributed to tribological performance by different methods.

1.
Dong
,
H.
,
Qi
,
P. Y.
,
Li
,
X. Y.
, and
Llewellyn
,
R. J.
, 2006, “
Improving the Erosion–Corrosion Resistance of AISI 316 Austenitic Stainless Steel by Low-Temperature Plasma Surface Alloying With N and C
,”
Mater. Sci. Eng., A
0921-5093,
431
, pp.
137
145
.
2.
Lin
,
Y. M.
,
Lu
,
J.
,
Wang
,
L. P.
,
Xu
,
T.
, and
Xue
,
Q. J.
, 2006, “
Surface Nanocrystallization by Surface Mechanical Attrition Treatment and Its Effect on Structure and Properties of Plasma Nitrided AISI 321 Stainless Steel
,”
Acta Mater.
1359-6454,
54
, pp.
5599
5605
.
3.
Baranowska
,
J.
, and
Franklin
,
S. E.
, 2008, “
Characterization of Gas-Nitrided Austenitic Steel With an Amorphous/Nanocrystalline Top Layer
,”
Wear
0043-1648,
264
, pp.
899
903
.
4.
Pinedo
,
C. E.
, and
Monteiro
,
W. A.
, 2004, “
On the Kinetics of Plasma Nitriding a Martensitic Stainless Steel Type AISI 420
,”
Surf. Coat. Technol.
0257-8972,
179
, pp.
119
123
.
5.
Recco
,
A. A. C.
,
López
,
D.
,
Bevilacqua
,
A. F.
,
Silva
,
F. da
, and
Tschiptschin
,
A. P.
, 2007, “
Improvement of the Slurry Erosion Resistance of an Austenitic Stainless Steel With Combinations of Surface Treatments: Nitriding and TiN Coating
,”
Surf. Coat. Technol.
0257-8972,
202
, pp.
993
997
.
6.
Rahman
,
M.
,
Haider
,
J.
, and
Hashmi
,
M. S. J.
, 2005, “
Low Temperature Plasma Nitriding of 316 Stainless Steel by a Saddle Field Fast Atom Beam Source
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
1645
1651
.
7.
Mingolo
,
N.
,
Tschiptschinm
,
A. P.
, and
Pinedo
,
C. E.
, 2006, “
On the Formation of Expanded Austenite During Plasma Nitriding of an AISI 316L Austenitic Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
4215
4218
.
8.
Rahman
,
M.
, and
Hashmi
,
M. S. J.
, 2006, “
Effect of Treatment Time on Low Temperature Plasma Nitriding of Stainless Steel by Saddle Field Neutral Fast Atom Beam Source
,”
Thin Solid Films
0040-6090,
515
, pp.
231
238
.
9.
Liang
,
W.
, 2003, “
Surface Modification of AISI 304 Austenitic Stainless Steel by Plasma Nitriding
,”
Appl. Surf. Sci.
0169-4332,
211
, pp.
308
314
.
10.
Mändl
,
S.
,
Günzel
,
R.
,
Möller
,
W.
,
Hilke
,
R.
,
Knösel
,
E.
, and
Künanz
,
K.
, 1998, “
Characterization of Drills Implanted With Nitrogen Plasma Immersion Ion Implantation
,”
Surf. Coat. Technol.
0257-8972,
103–104
, pp.
161
167
.
11.
Blawert
,
C.
,
Mordike
,
B. L.
,
Collins
,
G. A.
,
Short
,
K. T.
, and
Tendys
,
J.
, 1998, “
Influence of Process Parameters on the Nitriding of Steels by Plasma Immersion Ion Implantation
,”
Surf. Coat. Technol.
0257-8972,
103–104
, pp.
240
247
.
12.
Pelletier
,
J.
,
Lacoste
,
A.
,
Arnal
,
Y.
,
Lagarde
,
T.
,
Lincot
,
C.
, and
Hertz
,
D.
, 2001, “
New Trends in DECR Plasma Technology: Applications to Novel Duplex Treatments and Process Combinations With Extreme Plasma Specifications
,”
Surf. Coat. Technol.
0257-8972,
139
, pp.
222
232
.
13.
Camps
,
E.
,
Muhl
,
S.
, and
Romero
,
S.
, 1998, “
Influence of Microwave Plasma Parameters on the Nitriding of T-304 Stainless Steel
,”
Vacuum
0042-207X,
51
, pp.
385
392
.
14.
Musil
,
J.
,
Vlcek
,
J.
, and
Ruzicka
,
M.
, 2000, “
Recent Progress in Plasma Nitriding
,”
Vacuum
0042-207X,
59
, pp.
940
951
.
15.
Valencia-Alvarado
,
R.
,
de la Piedad-Beneitez
,
A.
,
de la Rosa-Vazquez
,
J.
,
López-Callejas
,
R.
,
Barocio
,
S. R.
,
Godoy-Cabrera
,
O. G.
,
Mercado-Cabrera
,
A.
,
Peña-Eguiluz
,
R.
, and
Muñoz-Castro
,
A. E.
, 2008, “
Nitriding of AISI 304 Stainless Steel in a 85% H2/15% N2 Mixture With an Inductively Coupled Plasma Source
,”
Vacuum
0042-207X,
82
, pp.
1360
1363
.
16.
Manova
,
D.
,
Mändl
,
S.
,
Neumann
,
H.
, and
Rauschenbach
,
B.
, 2006, “
Influence of Annealing Conditions on Ion Nitriding of Martensitic Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
6563
6567
.
17.
Sharma
,
M. K.
,
Saikia
,
B. K.
,
Phukan
,
A.
, and
Ganguli
,
A.
, 2006, “
Plasma Nitriding of Austenitic Stainless Steel in N2 and N2–H2 DC Pulsed Discharge
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
2407
2413
.
18.
Negm
,
N. Z.
, 2006, “
Effect of Annealing Temperature on Properties of H2/N2 RF Plasma-Treated Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
1763
1767
.
19.
Singh
,
V.
,
Marchev
,
K.
,
Cooper
,
C. V.
, and
Meletis
,
E. I.
, 2002, “
Intensified Plasma-Assisted Nitriding of AISI 316L Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
160
, pp.
249
258
.
20.
Borgioli
,
F.
,
Fossati
,
A.
,
Galvanetto
,
E.
, and
Bacci
,
T.
, 2005, “
Glow-Discharge Nitriding of AISI 316L Austenitic Stainless Steel: Influence of Treatment Temperature
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
2474
2480
.
21.
Xi
,
Y. T.
,
Liu
,
D. X.
, and
Han
,
D.
, 2008, “
Improvement of Erosion and Erosion-Corrosion Resistance of AISI 420 Stainless Steel by Low Temperature Plasma Nitriding
,”
Appl. Surf. Sci.
0169-4332,
254
, pp.
5953
5958
.
22.
Li
,
G. J.
,
Peng
,
Q.
,
Li
,
C.
,
Wang
,
Y.
,
Gao
,
J.
,
Chen
,
Sh. Y.
,
Wang
,
J.
, and
Shen
,
B. L.
, 2008, “
Effect of DC Plasma Nitriding Temperature on Microstructure and Dry-Sliding Wear Properties of 316L Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
202
, pp.
2749
2754
.
23.
Xi
,
Y. T.
,
Liu
,
D. X.
, and
Han
,
D.
, 2008, “
Improvement of Corrosion and Wear Resistances of AISI 420 Martensitic Stainless Steel Using Plasma Nitriding at Low Temperature
,”
Surf. Coat. Technol.
0257-8972,
202
, pp.
2577
2583
.
24.
Baranowska
,
J.
,
Franklin
,
S. E.
, and
Kochmanska
,
A.
, 2007, “
Wear Behaviour of Low-Temperature Gas Nitrided Austenitic Stainless Steel in a Corrosive Liquid Environment
,”
Wear
0043-1648,
263
, pp.
669
673
.
25.
Xia
,
Y. Q.
,
Hu
,
J. H.
,
Zhou
,
F.
, et al.
, 2005, “
Friction and Wear Behavior of Plasma Nitrided 1Cr18Ni9Ti Austenitic Stainless Steel Under Lubrication Condition
,”
Mater. Sci. Eng., A
0921-5093,
402
, pp.
135
141
.
26.
Spikes
,
H.
, 2004, “
The History and Mechanisms of ZDDP
,”
Tribol. Lett.
1023-8883,
17
, pp.
469
499
.
27.
Rohr
,
O.
, 1993, “
Bismuth a New Metallic but Non-Toxic Replacement for Lead as EP-Additive in Greases
,”
NLGI Spokesman
,
57
(
2
), pp.
50
57
.
28.
Lin
,
Y. M.
,
Xu
,
T.
,
Liang
,
A. M.
, and
Xue
,
Q. J.
, 2005, “
Effects of Treatment Temperature on DC-Pulsed Plasma Nitriding of 1Cr18Ni9Ti Steel
,”
Heat Treat. Met.
0305-4829,
30
(
10
), pp.
64
67
.
29.
Xu
,
X. L.
,
Yu
,
Zh. W.
,
Wang
,
L.
,
Qiang
,
J. B.
, and
Hei
,
Z. K.
, 2003, “
Phase Depth Distribution Characteristics of the Plasma Nitrided Layer on AISI 304 Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
162
, pp.
242
247
.
30.
Moulder
,
J. F.
,
Stickle
,
W. F.
, and
Sobol
,
P. E.
, 1995,
Handbook of X-Ray Photoelectron Spectroscopy
,
Perkin-Elmer Corporation
,
Eden Prairie, MN
.
You do not currently have access to this content.