This paper deals with effects of grease types on vibrations and acoustic emissions (AEs) of linear-guideway type recirculating ball bearings with a millimeter-sized artificial defect in the carriage. First, the vibration and AE of one normal bearing without a defect (Type N) and six defective bearings (Types D1–D6) were measured using a linear velocity of 1 m/s. Three types of grease are used for the lubrication of test bearings. The experimental results show that the vibration and AE amplitudes (the pulse amplitudes, the root-mean-square (RMS) values, and component amplitudes in the spectra) of both the normal and defective bearings have a tendency to be reduced when a grease with higher base oil viscosity is used. Under the same type of grease, the RMS values of the vibrations and AE of the defective bearings increase as the defect angle increases. However, the increases of the RMS values due to increased defect angle (the increasing rates of the RMS values) are reduced when a grease with higher base oil viscosity is used. To explain these experimental results, grease impact tests are carried out. The grease impact tests show that a grease with higher base oil viscosity reduces the impact velocity and the maximum impact forces. This implies that a grease with higher base oil viscosity generate greater viscous resistance to balls in the test bearings then reduces the ball impact forces in the ball circulation collisions and ball-defect collisions. Because of the reduction of the ball impact forces, both the vibration and AE amplitudes as well as the increasing rate of the RMS values are reduced.

1.
Braun
,
S.
, and
Danter
,
B.
, 1979, “
Analysis of Roller/Ball Bearing Vibrations
,”
ASME J. Mech. Des.
0161-8458,
101
, pp.
118
125
.
2.
Taylor
,
J. I.
, 1980, “
Identification of Bearing Defects by Spectral Analysis
,”
ASME J. Mech. Des.
0161-8458,
102
, pp.
199
204
.
3.
Noda
,
B.
, 1981, “
A Study on the Prediction of Abnormalities in Rolling Bearings (2)
,”
Proceedings of the 26th JSLE Meeting
, pp.
125
128
.
4.
Igarashi
,
T.
, and
Hamada
,
H.
, 1982, “
Studies on the Vibration and Sound of Defective Rolling Bearings (First Report: Vibration of Ball Bearings With One Defect)
,”
Bull. JSME
0021-3764,
25
(
204
), pp.
994
1001
.
5.
Mathew
,
J.
, and
Alfredson
,
R. J.
, 1984, “
The Condition Monitoring of Rolling Element Bearings Using Vibration Analysis
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
, pp.
447
453
.
6.
McFadden
,
P. D.
, and
Smith
,
J. D.
, 1984, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
0022-460X,
96
(
1
), pp.
69
82
.
7.
McFadden
,
P. D.
, and
Smith
,
J. D.
, 1985, “
The Vibration Produced by Multiple Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
0022-460X,
98
(
2
), pp.
263
273
.
8.
Su
,
Y. -T.
, and
Lin
,
S. -J.
, 1992, “
On Initial Fault Detection of a Tapered Roller Bearing: Frequency Domain Analysis
,”
J. Sound Vib.
0022-460X,
155
(
1
), pp.
75
84
.
9.
Li
,
B.
,
Goddu
,
G.
, and
Chow
,
M. -Y.
, 1998, “
Detection of Common Motor Bearing Faults Using Frequency-Domain Vibration Signals and a Neural Network Based Approach
,”
Proceedings of the American Control Conference
, pp.
2032
2036
.
10.
Tang
,
Y.
, and
Sun
,
Q.
, 2003, “
Application of the Continuous Wavelet Transform to Bearing Defect Diagnosis
,”
ASME J. Tribol.
0742-4787,
125
, pp.
871
873
.
11.
Taylor
,
J. I.
, and
Kirkland
,
D. W.
, 2004,
The Bearing Analysis Handbook
,
Vibration Consultants
,
Tampa, FL
.
12.
Choy
,
F. K.
,
Zhou
,
J.
,
Braun
,
M. J.
, and
Wang
,
L.
, 2005, “
Vibration Monitoring and Damage Quantification of Faulty Ball Bearing
,”
ASME J. Tribol.
0742-4787,
127
, pp.
776
783
.
13.
Yoshioka
,
T.
, and
Fujiwara
,
T.
, 1982, “
A New Acoustic Emission Source Locating System for the Study of Rolling Contact Fatigue
,”
Wear
0043-1648,
81
, pp.
183
186
.
14.
Tandon
,
N.
, and
Nakra
,
B. C.
, 1990, “
Defect Detection in Rolling Element Bearings by Acoustic Emission Method
,”
J. Acoust. Emiss.
0730-0050,
9
(
1
), pp.
25
28
.
15.
Choudhury
,
A.
, and
Tandon
,
N.
, 2000, “
Application of Acoustic Emission Technique for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
0301-679X,
33
, pp.
39
45
.
16.
Mba
,
D.
, 2003, “
Acoustic Emissions and Monitoring Bearing Health
,”
STLE Tribol. Trans.
1040-2004,
46
(
3
), pp.
447
451
.
17.
Al-Dossary
,
S.
,
Raja Hamzah
,
R. I.
, and
Mba
,
D.
, 2009, “
Observations of Changes in Acoustic Emission Waveform for Varying Seeded Defect Sizes in a Rolling Element Bearing
,”
Appl. Acoust.
0003-682X,
70
(
1
), pp.
58
81
.
18.
Honjo
,
Y.
,
Watanabe
,
S.
, and
Yoshioka
,
T.
, 2003, “
Rolling Detection of Fatigue Failure of LM Guides
,”
Magazine for Productive Maintenance
0388-7529,
238
, pp.
70
74
(in Japanese).
19.
Michioka
,
H.
,
Yoshioka
,
T.
,
Honjo
,
Y.
, and
Watanabe
,
S.
, 2004, “
Diagnostics for Linear Guideway Using Acoustic Emission Method (1st Report, Detection of Rolling Contact Fatigue Failure)
,”
Proceedings of Autumn JSPE Meeting
, pp.
839
840
(in Japanese).
20.
Choy
,
F. K.
,
Huang
,
S.
,
Zakrajsek
,
J. J.
,
Handschuh
,
R. F.
, and
Townsend
,
D. P.
, 1994, “
Vibration Signature Analysis of a Faulted Gear Transmission System
,” NASA Technical Memorandum, 106623, pp.
1
14
.
21.
Choy
,
F. K.
,
Mugler
,
D. H.
, and
Zhou
,
J.
, 2003, “
Damage Identification of a Gear Transmission Using Vibration Signatures
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
394
403
.
22.
Choy
,
F. K.
,
Chen
,
H.
, and
Zhou
,
J.
, 2006, “
Identification of Single and Multiple Teeth Damage in a Gear Transmission System
,”
Tribol. Trans.
1040-2004,
49
, pp.
297
304
.
23.
Wang
,
W. J.
, and
McFadden
,
P. D.
, 1996, “
Application of Wavelet to Gearbox Vibration Signals for Fault Detection
,”
J. Sound Vib.
0022-460X,
192
(
5
), pp.
927
939
.
24.
Wang
,
W. Q.
,
Ismail
,
F.
, and
Golnaraghi
,
M. F.
, 2001, “
Assessment of Gear Damage Monitoring Techniques Using Vibration Measurements
,”
Mech. Syst. Signal Process.
0888-3270,
15
(
5
), pp.
905
922
.
25.
Ohta
,
H.
, and
Nakagawa
,
T.
, 2003, “
Using Ceramic Balls to Reduce Noise in a Linear Guideway Type Recirculating Linear Ball Bearing
,”
ASME J. Tribol.
0742-4787,
125
, pp.
480
486
.
26.
Shimizu
,
S.
, 1991, “
Load Distribution and Accuracy-Rigidity of Linear Motion Ball Guide Systems (Theoretical Verification for Accuracy Average Effect)
,”
J. Japan Soc. Precis. Eng.
,
57
, pp.
1814
1819
(in Japanese).
27.
Shimizu
,
S.
,
Tsuchiya
,
K.
,
Saito
,
H.
,
Fujii
,
K.
,
Tosha
,
K.
, and
Shimoda
,
H.
, 2007, “
Life Distribution and Reliability for Linear Bearings in Case of Roller Guide
,”
J. Japan Soc. Precis. Eng.
,
73
(
6
), pp.
693
698
(in Japanese).
28.
Ohta
,
H.
,
Matsuura
,
K.
,
Kato
,
S.
, and
Igarashi
,
Y.
, 2010, “
Vibration and Acoustic Emission of Linear-Guideway Type Recirculating Ball Bearing With a Millimeter-Sized Artificial Defect in the Carriage
,”
ASME J. Tribol.
0742-4787,
132
, p.
011101
.
29.
Igarashi
,
T.
, and
Kamiya
,
N.
, 1971, “
Effects of Lubricants on Vibration and Sound of Ball Bearings
,”
Journal of Japan Society of Lubrication Engineers
0449-4156,
17
(
3
), pp.
154
160
(in Japanese).
30.
Ramamurthy
,
S.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
, 2000, “
Vibration in Grease Lubricated Bearing Systems
,”
Tribol. Trans.
1040-2004,
43
, pp.
403
410
.
31.
Miettinen
,
J.
,
Andersson
,
P.
, and
Wikström
,
V.
, 2001, “
Analysis of Grease Lubrication of a Ball Bearing Using Acoustic Emission Measurement
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
215
, pp.
535
544
.
32.
Ramirez
,
R. W.
, 1985,
The FFT Fundamentals and Concepts
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
33.
Boashash
,
B.
, and
Black
,
P. J.
, 1987, “
An Efficient Real-Time Implementation of the Winger-Ville Distribution
,”
IEEE Trans. Acoust., Speech, Signal Process.
0096-3518,
35
(
11
), pp.
1611
1618
.
34.
Shin
,
Y. S.
, and
Jeon
,
J. -J.
, 1993, “
Pseudo Wigner-Ville Time-Frequency Distribution and Its Application to Machinery Condition Monitoring
,”
Shock Vib.
1070-9622,
1
(
1
), pp.
65
76
.
35.
Qian
,
S.
, 2001,
Introduction to Time-Frequency and Wavelet Transforms
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Neild
,
S. A.
,
McFadden
,
P. D.
, and
Williams
,
M. S.
, 2003, “
A Review of Time-Frequency Methods for Structural Vibration Analysis
,”
Eng. Struct.
0141-0296,
25
, pp.
713
728
.
37.
Taylor
,
J. I.
, 2003,
The Vibration Analysis Handbook
,
Vibration Consultants
,
Tampa, FL
.
38.
NSK Ltd., 2003, Precision Machine Components, CAT. No. E1616a, Tokyo.
39.
Okamoto
,
J.
,
Nakayama
,
K.
, and
Soto
,
M.
, 1993,
Introduction to Tribology
, 3rd ed.,
Saiwai Shobo
,
Tokyo
, pp.
53
76
(in Japanese).
40.
Kido
,
Y.
,
Miyagawa
,
H.
, and
Imado
,
K.
, 1999, “
Study on Contact Condition Under Squeeze Film Formation
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
65
(633C), pp.
2057
2062
(in Japanese).
41.
Igarashi
,
T.
,
Goto
,
M.
, and
Kawasaki
,
A.
, 1985, “
Studies on Impact Sound (1st Report, The Sound Generated by a Ball Colliding With a Plate)
,”
Bull. JSME
0021-3764,
28
(
235
), pp.
148
154
.
You do not currently have access to this content.