Abstract

A new approach for modeling fretting wear in a Hertzian line contact is presented. The combined finite-discrete element method (FDEM) in which multiple finite element bodies interact as distinct bodies is used to model a two-dimensional fretting contact with and without coatings. The normal force and sliding distance are used during each fretting cycle, and fretting wear is modeled by locally applying Archard’s wear equation to determine wear loss along the surface. The FDEM is validated by comparing the pressure and frictional shear stress results to the continuum mechanics solution for a Hertzian fretting contact. The dependence of the wear algorithm stability on the cycle increment of a fretting simulation is also investigated. The effects of friction coefficient, normal force, displacement amplitude, coating thickness, and coating modulus of elasticity on fretting wear are presented.

1.
Cattaneo
,
C.
, 1938, “
Sul Contatto di due Corpi Elastici: Distribuzion locale degli sforzi
,”
Rend. Accad. Naz. Lincei
0392-7881,
27
, pp.
342
348
.
2.
Mindlin
,
R. D.
, 1949, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
0021-8936,
16
(
3
), pp.
259
268
.
3.
Hills
,
D. A.
, and
Nowell
,
D.
, 1994,
Mechanics of Fretting Fatigue
,
Kluwer Academic
,
Dordrecht, The Netherlands
, Chap. 3.
4.
Goryacheva
,
I. G.
,
Rajeev
,
P. T.
, and
Farris
,
T. N.
, 2001, “
Wear in Partial Slip Contact
,”
ASME J. Tribol.
0742-4787,
123
(
4
), pp.
848
856
.
5.
Hills
,
D. A.
,
Sackfield
,
A.
, and
Paynter
,
R. J. H.
, 2009, “
Simulation of Fretting Wear in Halfplane Geometries: Part 1—The Solution for Long Term Wear
,”
ASME J. Tribol.
0742-4787,
131
(
3
), p.
031401
.
6.
Nowell
,
D.
, 2010, “
Simulation of Fretting Wear in Half-Plane Geometries—Part II: Analysis of the Transient Wear Problem Using Quadratic Programming
,”
ASME J. Tribol.
0742-4787,
132
(
2
), p.
021402
.
7.
Ciavarella
,
M.
,
Hills
,
D. A.
, and
Moobola
,
R.
, 1999, “
Analysis of Plane and Rough Contacts, Subject to a Shearing Force
,”
Int. J. Mech. Sci.
0020-7403,
41
(
1
), pp.
107
120
.
8.
Kasarekar
,
A. T.
,
Bolander
,
N. W.
,
Sadeghi
,
F.
, and
Tseregounis
,
S.
, 2007, “
Modeling of Fretting Wear Evolution in Rough Circular Contacts in Partial Slip
,”
Int. J. Mech. Sci.
0020-7403,
49
(
6
), pp.
690
703
.
9.
Põdra
,
P.
, and
Andersson
,
S.
, 1999, “
Simulating Sliding Wear With Finite Element Method
,”
Tribol. Int.
0301-679X,
32
(
2
), pp.
71
81
.
10.
Eleod
,
A.
,
Devecz
,
J.
, and
Balogh
,
T.
, 2000, “
Numerical Modeling of the Mechanical Process of Particle Detachment by Finite Element Method
,”
Periodica Polytechnica Transportation Engineering
,
28
(
1–2
), pp.
77
90
.
11.
Öqvist
,
M.
, 2001, “
Numerical Simulations of Mild Wear Using Updated Geometry With Different Step Size Approaches
,”
Wear
0043-1648,
249
(
1–2
), pp.
6
11
.
12.
McColl
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
, 2004, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
0043-1648,
256
(
11–12
), pp.
1114
1127
.
13.
Ding
,
J.
,
McColl
,
I. R.
,
Leen
,
S. B.
, and
Shipway
,
P. H.
, 2007, “
A Finite Element Based Approach to Simulating the Effects of Debris on Fretting Wear
,”
Wear
0043-1648,
263
(
1–6
), pp.
481
491
.
14.
Ding
,
J.
,
Leen
,
S. B.
, and
McColl
,
I. R.
, 2004, “
The Effect of Slip Regime on Fretting Wear-Induced Stress Evolution
,”
Int. J. Fatigue
0142-1123,
26
(
5
), pp.
521
531
.
15.
Mohd Tobi
,
A. L.
,
Ding
,
J.
,
Bandak
,
G.
,
Leen
,
S. B.
, and
Shipway
,
P. H.
, 2009, “
A Study on the Interaction Between Fretting Wear and Cyclic Plasticity for Ti–6Al–4V
,”
Wear
0043-1648,
267
(
1–4
), pp.
270
282
.
16.
Fouvry
,
S.
,
Liskiewicz
,
T.
, and
Paulin
,
C.
, 2007, “
A Global-Local Wear Approach to Quantify the Contact Endurance Under Reciprocating-Fretting Sliding Conditions
,”
Wear
0043-1648,
263
(
1–6
), pp.
518
531
.
17.
Paulin
,
C.
,
Fouvry
,
S.
, and
Meunier
,
C.
, 2008, “
Finite Element Modeling of Fretting Wear Surface Evolution
,”
Wear
0043-1648,
264
(
1–2
), pp.
26
36
.
18.
Munjiza
,
A.
, 2004,
The Combined Finite-Discrete Element Method
,
Wiley
,
London, UK
, Chaps. 2 and 3.
19.
Potapov
,
A. V.
, and
Campbell
,
C. S.
, 1996, “
A Hybrid Finite-Element Simulation of Solid Fracture
,”
Int. J. Mod. Phys. C
0129-1831,
7
(
2
), pp.
155
180
.
20.
Potapov
,
A. V.
,
Hopkins
,
M. A.
, and
Campbell
,
C. S.
, 1995, “
A Two-Dimensional Dynamic Simulation of Solid Fracture Part I: Description of the Model
,”
Int. J. Mod. Phys. C
0129-1831,
6
(
3
), pp.
371
398
.
21.
Potapov
,
A. V.
,
Campbell
,
C. S.
, and
Hopkins
,
M. A.
, 1995, “
A Two-Dimensional Dynamic Simulation of Solid Fracture Part II: Examples
,”
Int. J. Mod. Phys. C
0129-1831,
6
(
3
), pp.
399
425
.
22.
Munjiza
,
A.
,
Latham
,
J. P.
, and
Andrews
,
K. R. F.
, 2000, “
Detonation Gas Model for Combined Finite-Discrete Element Simulation of Fracture and Fragmentation
,”
Int. J. Numer. Methods Eng.
0029-5981,
49
(
12
), pp.
1495
1520
.
23.
Paavilainen
,
J.
,
Tuhkuri
,
J.
, and
Polojarvi
,
A.
, 2009, “
2D Combined Finite-Discrete Element Method to Model Multi-Fracture of Beam Structures
,”
Eng. Comput.
0177-0667,
26
(
6
), pp.
578
598
.
24.
Guises
,
R.
,
Xiang
,
J.
,
Latham
,
J. P.
, and
Munjiza
,
A.
, 2009, “
Granular Packing: Numerical Simulation and the Characterization of the Effect of Particle Shape
,”
Granular Matter
1434-5021,
11
(
5
), pp.
281
292
.
25.
Moharnmadi
,
S.
,
Owen
,
D. R. J.
, and
Peric
,
D.
, 1998, “
A Combined Finite/Discrete Element Algorithm for Analysis of Composites
,”
Finite Elem. Anal. Design
0168-874X,
28
(
4
), pp.
321
336
.
26.
Komodromos
,
P.
, and
Williams
,
J.
, 2004, “
Dynamic Simulation of Multiple Deformable Bodies Using Combined Discrete and Finite Element Methods
,”
Eng. Comput.
0177-0667,
21
(
2–4
), pp.
431
448
.
27.
Hopkins
,
M. A.
, 1992, “
Numerical Simulation of Systems of Multitudinous Polygonal Blocks
,” USACR-REL, Report No. CR 99-22.
28.
Underwood
,
P.
, 1983, “
Dynamic Relaxation
,”
Computational Method for Transient Analysis
,
T.
Belytschko
and
T. J. R.
Hughes
, eds.,
Elsevier Science
,
Amsterdam, The Netherlands
, pp.
245
265
.
29.
Kutt
,
L. M.
,
Pifko
,
A. B.
,
Nardiello
,
J. A.
, and
Papazian
,
J. M.
, 1998, “
Slow-Dynamic Finite Element Simulation of Manufacturing Processes
,”
Comput. Struct.
0045-7949,
66
(
1
), pp.
1
17
.
30.
Chung
,
W. J.
,
Cho
,
J. W.
, and
Belytschko
,
T.
, 1998, “
On the Dynamic Effects of Explicit FEM in Sheet Metal Forming Analysis
,”
Eng. Comput.
0177-0667,
15
(
6
), pp.
750
776
.
31.
Nikas
,
G. K.
, and
Sayles
,
R. S.
, 2009, “
Surface Coatings and Finite-Element Analysis of Layered Fretting Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
223
(
2
), pp.
159
181
.
32.
Leonard
,
B. D.
,
Sadeghi
,
F. S.
,
Evans
,
R. D.
,
Doll
,
G. L.
, and
Shiller
,
P. J.
, 2010, “
Fretting of WC/a-C:H and Cr2N Coatings Under Grease Lubricated and Unlubricated Conditions
,”
Tribol. Trans.
1040-2004,
53
(
1
), pp.
145
153
.
You do not currently have access to this content.