Abstract

The occurrence of abrasion is inevitable in most engineering systems. Abrasive wear specifically two-body causes higher material and dimensional loss than other modes of wear. Two-body abrasion is yet to be fully comprehended as it is governed by several intrinsic and extrinsic variables. In this article, tribo-performances of Al-composites were experimentally studied with specific emphasis on the role of abrasive size and amount of reinforcement. AA7075 alloy matrix composites with different amounts of alumina particles were fabricated by the advanced stir-casting method. Besides measurements of density, porosity, and Vickers hardness, in-depth characterizations of microstructures were performed. Specific wear-rate (SWR), coefficient of friction (COF), and abraded surface roughness (SR) of developed materials were measured under two-body abrasion over a vast range of distance, load, velocity, and abrasive size. Under all abrasion conditions, composites exhibited higher SR but lower SWR and COF over alloy; the differences increased with reinforcement quantity. SWR, COF, and SR rose with an increase in abrasive size; however, only SR varied with sliding distance for any material. The effects of different variables on the recorded tribo-performances were explained through identification of various micro-mechanisms of abrasion via extensive post wear characterizations and microstructural features. Finally, the criteria for the occurrence of three-body abrasion even in two-body test configuration were highlighted. The wear coefficient value of 10 × 10−3 was identified as the demarcation between two-body and two-body plus three-body abrasion for Al-matrix composites.

References

1.
Borgonovo
,
C.
, and
Apelian
,
D.
,
2011
, “
Manufacture of Aluminum Nanocomposites: A Critical Review
,”
Mater. Sci. Forum
,
678
, pp.
1
22
. 10.4028/www.scientific.net/MSF.678.1
2.
Prabu
,
S. B.
,
Karunamoorthy
,
L.
,
Kathiresan
,
S.
, and
Mohan
,
B.
,
2006
, “
Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
268
273
. 10.1016/j.jmatprotec.2005.06.071
3.
Roy
,
D.
,
Ghosh
,
S.
,
Basumallick
,
A.
, and
Basu
,
B.
,
2006
, “
Preparation of Fe-Aluminide Reinforced In Situ Metal Matrix Composites by Reactive Hot Pressing
,”
Mater. Sci. Eng. A
,
415
(
1–2
), pp.
202
206
. 10.1016/j.msea.2005.09.100
4.
Hesabi
,
Z. R.
,
Simchi
,
A.
, and
Reihani
,
S. M. S.
,
2006
, “
Structural Evolution During Mechanical Milling of Nanometric and Micrometric Al2O3 Reinforced Al Matrix Composites
,”
Mater. Sci. Eng. A
,
428
(
1–2
), pp.
159
168
. 10.1016/j.msea.2006.04.116
5.
Constantin
,
V.
,
Scheed
,
L.
, and
Masounave
,
J.
,
1999
, “
Sliding Wear of Aluminum-Silicon Carbide Metal Matrix Composites
,”
ASME J. Tribol.
,
121
(
4
), pp.
787
794
. 10.1115/1.2834136
6.
Kumar
,
P. R. S.
,
Kumaran
,
S.
,
Rao
,
T. S.
, and
Natarajan
,
S.
,
2010
, “
High Temperature Sliding Wear Behavior of Press-Extruded AA6061/Fly Ash Composite
,”
Mater. Sci. Eng. A
,
527
(
6
), pp.
1501
1509
. 10.1016/j.msea.2009.10.016
7.
Ahmed
,
A.
,
Neely
,
A. J.
,
Shankar
,
K.
,
Nolan
,
P.
,
Moricca
,
S.
, and
Eddowes
,
T.
,
2010
, “
Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites
,”
Metall. Mater. Trans. A
,
41
(
6
), pp.
1582
1591
. 10.1007/s11661-010-0201-y
8.
Jayaganthan
,
R.
,
Brokmeier
,
H. G.
,
Schwebke
,
B.
, and
Panigrahi
,
S. K.
,
2010
, “
Microstructure and Texture Evolution in Cryorolled Al 7075 Alloy
,”
J. Alloys Compd.
,
496
(
1
), pp.
183
188
. 10.1016/j.jallcom.2010.02.111
9.
Dursun
,
T.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminium Alloys
,”
Mater. Des.
,
56
, pp.
862
871
. 10.1016/j.matdes.2013.12.002
10.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2008
, “
Effect of Submicron Size Al2O3 Particulates on Microstructural and Tensile Properties of Elemental Mg
,”
J. Alloys Compd.
,
457
(
1
), pp.
244
250
. 10.1016/j.jallcom.2007.03.058
11.
Kok
,
M.
,
2005
, “
Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites
,”
J. Mater. Process. Technol.
,
161
(
3
), pp.
381
387
. 10.1016/j.jmatprotec.2004.07.068
12.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2014
, “
Ultrasonic Cavitation Based Processing of Metal Matrix Nanocomposites: An Overview
,”
Adv. Mater. Res.
,
1042
, pp.
58
64
. 10.4028/www.scientific.net/AMR.1042.58
13.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
,
1999
, “
Metal Matrix Composites: Production by the Stir Casting Method
,”
J. Mater. Process. Technol.
,
92–93
, pp.
1
7
. 10.1016/S0924-0136(99)00118-1
14.
Mondal
,
D. P.
,
Das
,
S.
,
Jha
,
A. K.
, and
Yegneswaran
,
A. H.
,
1998
, “
Abrasive Wear of Al Alloy– Al2O3 Particle Composite: A Study on the Combined Effect of Load and Size of Abrasive
,”
Wear
,
223
(
1
), pp.
131
138
. 10.1016/S0043-1648(98)00278-6
15.
Sahin
,
Y.
, and
Özdin
,
K.
,
2008
, “
A Model for the Abrasive Wear Behaviour of Aluminium Based Composites
,”
Mater. Des.
,
29
(
3
), pp.
728
733
. 10.1016/j.matdes.2007.02.013
16.
Suresha
,
B.
,
Siddaramaiah
,
Kishore
,
Seetharamu
,
S.
,
Kumaran
,
P. S.
,
2009
, “
Investigations on the Influence of Graphite Filler on Dry Sliding Wear and Abrasive Wear Behaviour of Carbon Fabric Reinforced Epoxy Composites
,”
Wear
,
267
(
9
), pp.
1405
1414
. 10.1016/j.wear.2009.01.026
17.
Prasad Reddy
,
A.
,
Vamsi Krishna
,
P.
, and
Rao
,
R. N.
,
2019
, “
Two-Body Abrasive Wear Behaviour of AA6061-2SiC-2Gr Hybrid Nanocomposite Fabricated Through Ultrasonically Assisted Stir Casting
,”
J. Compos. Mater.
,
53
(
15
), pp.
2165
2180
.
18.
Kumar
,
A.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
Modeling the Abrasive Wear Characteristics of In-Situ Synthesized Al–4.5% Cu/TiC Composites
,”
Wear
,
306
(
1
), pp.
170
178
. 10.1016/j.wear.2013.08.013
19.
Deuis
,
R. L.
,
Subramanian
,
C.
, and
Yellup
,
J. M.
,
1996
, “
Abrasive Wear of Aluminium Composites—A Review
,”
Wear
,
201
(
1–2
), pp.
132
144
. 10.1016/S0043-1648(96)07228-6
20.
Gates
,
J. D.
,
1998
, “
Two-Body and Three-Body Abrasion: A Critical Discussion
,”
Wear
,
214
(
1
), pp.
139
146
. 10.1016/S0043-1648(97)00188-9
21.
Lin
,
S.-J.
, and
Liu
,
K.-S.
,
1988
, “
Effect of Aging on Abrasion Rate in an Al-Zn-Mg-SiC Composite
,”
Wear
,
121
(
1
), pp.
1
14
. 10.1016/0043-1648(88)90026-9
22.
Sheu
,
C.-Y.
, and
Lin
,
S.-J.
,
1996
, “
Particle Size Effects on the Abrasive Wear of 20 vol% SiCp/7075Al Composites
,”
Scr. Mater.
,
35
(
11
), pp.
1271
1276
. 10.1016/1359-6462(96)00291-6
23.
Das
,
S.
,
Mondal
,
D. P.
,
Sawla
,
S.
, and
Dixit
,
S.
,
2002
, “
High Stress Abrasive Wear Mechanism of LM13-SiC Composite Under Varying Experimental Conditions
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
3031
3044
. 10.1007/s11661-002-0288-x
24.
Kök
,
M.
, and
Özdin
,
K.
,
2007
, “
Wear Resistance of Aluminium Alloy and its Composites Reinforced by Al2O3 Particles
,”
J. Mater. Process. Technol.
,
183
(
2
), pp.
301
309
. 10.1016/j.jmatprotec.2006.10.021
25.
Das
,
S.
,
Das
,
S.
, and
Das
,
K.
,
2007
, “
Abrasive Wear of Zircon Sand and Alumina Reinforced Al–4.5 wt% Cu Alloy Matrix Composites—A Comparative Study
,”
Compos. Sci. Technol.
,
67
(
3
), pp.
746
751
. 10.1016/j.compscitech.2006.05.001
26.
Kumar
,
S.
, and
Balasubramanian
,
V.
,
2010
, “
Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behaviour of AA7075 Al/SiCp P/M Composites—A Statistical Analysis
,”
Tribol. Int.
,
43
(
1
), pp.
414
422
. 10.1016/j.triboint.2009.07.003
27.
Huei-Long
,
L.
,
Wun-Hwa
,
L.
, and
Chan
,
S. L.-I.
,
1992
, “
Abrasive Wear of Powder Metallurgy Al Alloy 6061-SiC Particle Composites
,”
Wear
,
159
(
2
), pp.
223
231
. 10.1016/0043-1648(92)90305-R
28.
Al-Rubaie
,
K. S.
,
Yoshimura
,
H. N.
, and
de Mello
,
J. D. B.
,
1999
, “
Two-Body Abrasive Wear of Al–SiC Composites
,”
Wear
,
233
, pp.
444
454
. 10.1016/S0043-1648(99)00185-4
29.
Yigezu
,
B. S.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
On Modeling the Abrasive Wear Characteristics of In Situ Al–12% Si/TiC Composites
,”
Mater. Des.
,
50
, pp.
277
284
. 10.1016/j.matdes.2013.02.042
30.
Şahin
,
Y.
,
2010
, “
Abrasive Wear Behaviour of SiC/2014 Aluminium Composite
,”
Tribol. Int.
,
43
(
5
), pp.
939
943
. 10.1016/j.triboint.2009.12.056
31.
Goddard
,
J.
, and
Wilman
,
H.
,
1962
, “
A Theory of Friction and Wear During the Abrasion of Metals
,”
Wear
,
5
(
2
), pp.
114
135
. 10.1016/0043-1648(62)90235-1
32.
Sin
,
H.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1979
, “
Abrasive Wear Mechanisms and the Grit Size Effect
,”
Wear
,
55
(
1
), pp.
163
190
. 10.1016/0043-1648(79)90188-1
33.
Rabinowicz
,
E.
, and
Mutis
,
A.
,
1965
, “
Effect of Abrasive Particle Size on Wear
,”
Wear
,
8
(
5
), pp.
381
390
. 10.1016/0043-1648(65)90169-9
34.
Larsen-Badse
,
J.
,
1968
, “
Influence of Grit Size on the Groove Formation During Sliding Abrasion
,”
Wear
,
11
(
3
), pp.
213
222
. 10.1016/0043-1648(68)90559-0
35.
Richardson
,
R. C. D.
,
1968
, “
The Wear of Metals by Relatively Soft Abrasives
,”
Wear
,
11
(
4
), pp.
245
275
. 10.1016/0043-1648(68)90175-0
36.
Axén
,
N.
, and
Zum Gahr
,
K. H.
,
1992
, “
Abrasive Wear of TiC-Steel Composite Clad Layers on Tool Steel
,”
Wear
,
157
(
1
), pp.
189
201
. 10.1016/0043-1648(92)90197-G
37.
Aiguo
,
W.
, and
Rack
,
H. J.
,
1991
, “
Abrasive Wear of Silicon Carbide Particulate- and Whisker-Reinforced 7091 Aluminum Matrix Composites
,”
Wear
,
146
(
2
), pp.
337
348
. 10.1016/0043-1648(91)90073-4
38.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2019
, “
Microstructure and Tribological Performance of Alumina–Aluminum Matrix Composites Manufactured by Enhanced Stir Casting Method
,”
ASME J. Tribol.
,
141
(
4
), p.
041602
. 10.1115/1.4042198
39.
Surappa
,
M. K.
,
2003
, “
Aluminium Matrix Composites: Challenges and Opportunities
,”
Sadhana
,
28
(
1
), pp.
319
334
. 10.1007/BF02717141
40.
Wang
,
A. G.
, and
Hutchings
,
I. M.
,
1989
, “
Wear of Alumina Fibre–Aluminium Metal Matrix Composites by Two-Body Abrasion
,”
Mater. Sci. Technol.
,
5
(
1
), pp.
71
76
. 10.1179/mst.1989.5.1.71
41.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
High Stress Abrasive Wear Characteristics of Al 7075 Alloy and 7075/Al2O3 Composite
,”
Measurement
,
127
, pp.
42
62
. 10.1016/j.measurement.2018.05.090
42.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
Tribological Properties of Al 7075 Alloy and 7075/Al2O3 Composite Under Two-Body Abrasion: A Statistical Approach
,”
ASME J. Tribol.
,
140
(
5
), p.
051602
. 10.1115/1.4039410
43.
Rokni
,
M. R.
,
Zarei-Hanzaki
,
A.
, and
Abedi
,
H. R.
,
2012
, “
Microstructure Evolution and Mechanical Properties of Back Extruded 7075 Aluminum Alloy at Elevated Temperatures
,”
Mater. Sci. Eng. A
,
532
, pp.
593
600
. 10.1016/j.msea.2011.11.020
44.
Karunanithi
,
R.
,
Bera
,
S.
, and
Ghosh
,
K. S.
,
2014
, “
Electrochemical Behaviour of TiO2 Reinforced Al 7075 Composite
,”
Mater. Sci. Eng. B
,
190
, pp.
133
143
. 10.1016/j.mseb.2014.06.013
45.
Akbari
,
M. K.
,
Mirzaee
,
O.
, and
Baharvandi
,
H. R.
,
2013
, “
Fabrication and Study on Mechanical Properties and Fracture Behavior of Nanometric Al2O3 Particle-Reinforced A356 Composites Focusing on the Parameters of Vortex Method
,”
Mater. Des.
,
46
, pp.
199
205
. 10.1016/j.matdes.2012.10.008
46.
Yilmaz
,
S. O.
,
2007
, “
Comparison on Abrasive Wear of SiCrFe, CrFeC and Al2O3 Reinforced Al2024 MMCs
,”
Tribol. Int.
,
40
(
3
), pp.
441
452
. 10.1016/j.triboint.2006.04.008
47.
Ezatpour
,
H. R.
,
Sajjadi
,
S. A.
,
Sabzevar
,
M. H.
, and
Huang
,
Y.
,
2014
, “
Investigation of Microstructure and Mechanical Properties of Al6061-Nanocomposite Fabricated by Stir Casting
,”
Mater. Des.
,
55
, pp.
921
928
. 10.1016/j.matdes.2013.10.060
48.
Yılmaz
,
O.
, and
Buytoz
,
S.
,
2001
, “
Abrasive Wear of Al2O3-Reinforced Aluminium-Based MMCs
,”
Compos. Sci. Technol.
,
61
(
16
), pp.
2381
2392
. 10.1016/S0266-3538(01)00131-2
49.
Sajjadi
,
S. A.
,
Parizi
,
M. T.
,
Ezatpour
,
H. R.
, and
Sedghi
,
A.
,
2012
, “
Fabrication of A356 Composite Reinforced With Micro and Nano Al2O3 Particles by a Developed Compocasting Method and Study of its Properties
,”
J. Alloys Compd.
,
511
(
1
), pp.
226
231
. 10.1016/j.jallcom.2011.08.105
50.
Kumar
,
R.
, and
Dhiman
,
S.
,
2013
, “
A Study of Sliding Wear Behaviors of Al-7075 Alloy and Al-7075 Hybrid Composite by Response Surface Methodology Analysis
,”
Mater. Des.
,
50
, pp.
351
359
. 10.1016/j.matdes.2013.02.038
51.
Hutchings
,
I. M.
,
1994
, “
Tribological Properties of Metal Matrix Composites
,”
Mater. Sci. Technol.
,
10
(
6
), pp.
513
517
. 10.1179/mst.1994.10.6.513
52.
Gant
,
A. J.
,
Gee
,
M. G.
, and
May
,
A. T.
,
2004
, “
The Evaluation of Tribo-Corrosion Synergy for WC–Co Hardmetals in Low Stress Abrasion
,”
Wear
,
256
(
5
), pp.
500
516
. 10.1016/j.wear.2003.04.001
53.
Sahin
,
Y.
,
2003
, “
Preparation and Some Properties of SiC Particle Reinforced Aluminium Alloy Composites
,”
Mater. Des.
,
24
(
8
), pp.
671
679
. 10.1016/S0261-3069(03)00156-0
54.
Modi
,
O. P.
,
Yadav
,
R. P.
,
Mondal
,
D. P.
,
Dasgupta
,
R.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
2001
, “
Abrasive Wear Behaviour of Zinc-Aluminium Alloy-10% Al2O3 Composite Through Factorial Design of Experiment
,”
J. Mater. Sci.
,
36
(
7
), pp.
1601
1607
. 10.1023/A:1017523214073
55.
Ghosh
,
P. K.
,
Prasad
,
P. R.
, and
Ray
,
S.
,
1984
, “
Effect of Porosity on the Strength of Particulate Composites
,”
Z. Metallkd.
,
75
(
12
), pp.
934
937
.
56.
Bhushan
,
B.
,
2012
,
Tribology and Mechanics of Magnetic Storage Devices
,
Springer Science and Business Media
,
New York
.
57.
Ludema
,
K. C.
, and
Tabor
,
D.
,
1966
, “
The Friction and Visco-Elastic Properties of Polymeric Solids
,”
Wear
,
9
(
5
), pp.
329
348
. 10.1016/0043-1648(66)90018-4
58.
Yu
,
S. Y.
,
Ishii
,
H.
,
Tohgo
,
K.
,
Cho
,
Y. T.
, and
Diao
,
D.
,
1997
, “
Temperature Dependence of Sliding Wear Behavior in SiC Whisker or SiC Particulate Reinforced 6061 Aluminum Alloy Composite
,”
Wear
,
213
(
1–2
), pp.
21
28
.
59.
Kato
,
K.
,
1992
, “
Micro-Mechanisms of Wear-Wear Modes
,”
Wear
,
153
(
1
), pp.
277
295
. 10.1016/0043-1648(92)90274-C
60.
Gahr
,
Z.
, and
H
,
K.
,
1988
, “
Modelling of Two-Body Abrasive Wear
,”
Wear
,
124
(
1
), pp.
87
103
. 10.1016/0043-1648(88)90236-0
61.
Clarke
,
J.
, and
Sarkar
,
A. D.
,
1981
, “
Topographical Features Observed in a Scanning Electron Microscopy Study of Aluminium Alloy Surfaces in Sliding Wear
,”
Wear
,
69
(
1
), pp.
1
23
. 10.1016/0043-1648(81)90309-4
62.
Rohatgi
,
P. K.
,
Guo
,
R. Q.
,
Huang
,
P.
, and
Ray
,
S.
,
1997
, “
Friction and Abrasion Resistance of Cast Aluminum Alloy-Fly Ash Composites
,”
Metall. Mater. Trans. A
,
28
(
1
), pp.
245
250
. 10.1007/s11661-997-0102-x
63.
Kanth
,
V. K.
,
Bai
,
B. N. P.
, and
Biswas
,
S. K.
,
1990
, “
Wear Mechanisms in a Hypereutectic Aluminium Silicon Alloy Sliding Against Steel
,”
Scr. Metall. Mater.
,
24
(
2
), pp.
267
271
. 10.1016/0956-716X(90)90254-E
64.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
,
Butterworth-Heinemann
,
Oxford, UK
.
65.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
. 10.1063/1.1721448
66.
Das
,
D.
,
Dutta
,
A. K.
, and
Ray
,
K. K.
,
2009
, “
Inconsistent Wear Behaviour of Cryotreated Tool Steels: Role of Mode and Mechanism
,”
Mater. Sci. Technol.
,
25
(
10
), pp.
1249
1257
. 10.1179/174328408X374685
67.
Ludema
,
K. C.
,
1996
,
Friction, Wear, Lubrication: A Textbook in Tribology
,
CRC Press, Inc, Boca Raton
,
Ann Arbor
.
68.
Alahelisten
,
A.
,
Bergman
,
F.
,
Olsson
,
M.
, and
Hogmark
,
S.
,
1993
, “
On the Wear of Aluminium and Magnesium Metal Matrix Composites
,”
Wear
,
165
(
2
), pp.
221
226
. 10.1016/0043-1648(93)90338-M
69.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2017
, “
Influence of Applied Load on Abrasive Wear Depth of Hybrid Gr/SiC/Al–Mg–Si Composites in a Two-Body Condition
,”
ASME J. Tribol.
,
139
(
6
), p.
061601
. 10.1115/1.4035779
70.
Rabinowicz
,
E.
,
Dunn
,
L. A.
, and
Russell
,
P. G.
,
1961
, “
A Study of Abrasive Wear Under Three-Body Conditions
,”
Wear
,
4
(
5
), pp.
345
355
. 10.1016/0043-1648(61)90002-3
71.
Samuels
,
L. E.
,
1956
, “
The Nature of Mechanically Polished Metal Surfaces: The Surface Deformation Produced by the Abrasion and Polishing of 70: 30 Brass
,”
J. Inst. Met.
,
85
, pp.
51
62
.
72.
Lopa
,
M.
,
1956
, “
A Study of the Influence of Hardness, Rubbing Speed and Load on Abrasive Wear
,”
BS thesis
,
MIT
,
Cambridge
.
73.
Avient
,
B. W. E.
,
Goddard
,
J.
, and
Wilman
,
H.
,
1960
, “
An Experimental Study of Friction and Wear During Abrasion of Metals
,”
Proc. R. Soc. Lond. Ser. A
,
258
(
1293
), pp.
159
180
. 10.1098/rspa.1960.0180
74.
Spurr
,
R. T.
, and
Newcomb
,
T. P.
,
1957
, “
The Variation of Friction With Velocity
,”
Proc. Phys. Soc. Lond. Sect. B
,
70
(
2
), p.
198
. 10.1088/0370-1301/70/2/306
You do not currently have access to this content.