Abstract

Centrifugal slurry pump designed for handling solid–liquid flow experiences performance reduction and shorter service life due to uneven localized erosive wear of the wetted parts. In this work, three-dimensional (3D) unsteady numerical modeling of a centrifugal slurry pump with Eulerian–Lagrangian approach coupled to the erosion model has been performed to predict the erosive wear of the pump components namely, casing and impeller. The erosion model developed to predict the erosion of the pump components of high chromium white cast iron (HCWCI) is employed, and the erosion rate distribution along the complete length and width of the casing and impeller blade surfaces namely, pressure side, suction side, front shroud, and back shroud, is determined. The numerical results showed good agreement with the experimentally measured erosion of the pump casing. It has been found that the erosion of the casing and impeller is non-uniform along the length and width. The zone of higher erosion is at the centerline and the back side of the casing, whereas, for the impeller, it is on the pressure side near the leading edge. The variation in the operating flowrate and particle size greatly influenced the material removal rate and the zone of higher erosion for the casing and impeller blade surfaces.

References

1.
Tarodiya
,
R.
, and
Gandhi
,
B. K.
,
2017
, “
Hydraulic Performance and Erosive Wear of Centrifugal Slurry Pumps—A Review
,”
Powder Technol.
,
305
(
1
), pp.
27
38
. 10.1016/j.powtec.2016.09.048
2.
Roco
,
M. C.
,
Addie
,
G. R.
,
Dennis
,
J.
, and
Nair
,
P.
,
1984
, “Modeling Erosion Wear in Centrifugal Slurry Pumps,” Hydrotransport 9, BHRA Fluid Engineering, Rome, Italy, Paper G1.
3.
Xie
,
Y.
,
Jiang
,
J.
,
Tufa
,
K. Y.
, and
Yick
,
S.
,
2015
, “
Wear Resistance of Materials Used for Slurry Transport
,”
Wear
,
332–333
(
6
), pp.
1104
1110
. 10.1016/j.wear.2015.01.005
4.
Widenroth
,
W.
,
1970
, “The Influence of Sand and Gravel on the Characteristics of Centrifugal Pumps, Some Aspects of Wear in Hydraulic Transportation Installations,” Hydrotransport 1, BHRA Fluid Engineering, Warwick, UK, Paper E1.
5.
Widenroth
,
W.
,
1993
, “The Evaluation of the Wear Distribution of a Dismountable Impeller in a Model-Dredge Pump,” Coal and Slurry Technology Association, Washington, DC.
6.
Walker
,
C. I.
,
Wells
,
P. J.
, and
Bodkin
,
G. C.
,
1994
,
The Effect of Flow Rate and Solid Particle Size on the Wear of Centrifugal Slurry Pumps
,
American Society of Mechanical Engineers
,
New York
.
7.
Rayan
,
M. A.
, and
Shawky
,
M.
,
1989
, “
Evaluation of Wear in a Centrifugal Slurry Pump
,”
Proc. Inst. Mech. Eng., Part A
,
203
(
1
), pp.
19
23
. 10.1243/PIME_PROC_1989_203_003_02
8.
Gandhi
,
B. K.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2001
, “
Variation of Wear Along the Volute Casing of a Centrifugal Slurry Pump
,”
JSME Int. J., Ser. B
,
44
(
2
), pp.
231
237
. 10.1299/jsmeb.44.231
9.
Tarodiya
,
R.
, and
Gandhi
,
B. K.
,
2019
, “
Experimental Investigation of Centrifugal Slurry Pump Casing Wear Handling Solid-Liquid Mixtures
,”
Wear
,
434–435
(
10
), p.
202972
. 10.1016/j.wear.2019.202972
10.
Ahmad
,
K.
,
Baker
,
R. C.
, and
Goulas
,
A.
,
1986
, “
Computation and Experimental Results of Wear in a Slurry Pump Impeller
,”
Proc. Inst. Mech. Eng., Part C
,
200
(
6
), pp.
439
445
. 10.1243/PIME_PROC_1986_200_153_02
11.
Minemura
,
K.
, and
Zhong
,
Y.
,
1995
, “
Numerical Prediction of Erosion Wear on Pump Casing Under Solid-Water two Phase Flow
,”
Proceedings of the Second International Conference on Multiphase Flow
, 95, pp.
1A3
1A7
.
12.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
. 10.1016/0043-1648(63)90003-6
13.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part II
,”
Wear
,
6
(
3
), pp.
169
190
. 10.1016/0043-1648(63)90073-5
14.
Roudnev
,
A. S.
,
Bourgeois
,
R. J.
, and
Kosmicki
,
R. J.
,
2009
, “
Slurry Pump Casing Wear Prediction Using Numerical Multi-Phase Flow Simulation
,”
ASME Fluids Engineering Division Summer Meeting
, pp.
515
523
.
15.
Batalovic
,
V.
,
2010
, “
Erosive Wear Model of Slurry Pump Impeller
,”
ASME J. Tribol.
,
132
(
2
), p.
021602
. 10.1115/1.4001167
16.
Pagalthivarthi
,
K. V.
,
Furlan
,
J. M.
, and
Visintainer
,
R. J.
,
2013
, “
Effect of Particle Size Distribution on Erosion Wear in Centrifugal Pump Casings
,”
ASME Fluids Engineering Division Summer Meeting
, p.
V01CT20A005
.
17.
Noon
,
A. A.
, and
Kim
,
M. H.
,
2016
, “
Erosion Wear on Centrifugal Pump Casing due to Slurry Flow
,”
Wear
,
364–365
(
10
), pp.
103
111
. 10.1016/j.wear.2016.07.005
18.
Finnie
,
I.
,
1972
, “
Some Observation on the Erosion of Ductile Materials
,”
Wear
,
19
(
1
), pp.
81
90
. 10.1016/0043-1648(72)90444-9
19.
Dong
,
J.
,
Qian
,
Z.
,
Thapa
,
B. S.
,
Thapa
,
B.
, and
Guo
,
Z.
,
2019
, “
Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion
,”
Energies
,
12
(
1
), p.
158
. 10.3390/en12010158
20.
Lai
,
F.
,
Wang
,
Y.
,
EI-Shahat
,
S. A.
,
Li
,
G.
, and
Zhu
,
X.
,
2019
, “
Numerical Study of Solid Particle Erosion in a Centrifugal Pump for Liquid–Solid Flow
,”
J. Fluid. Eng.
,
141
(
12
), p.
121302
. 10.1115/1.4043580
21.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
. 10.1016/j.wear.2006.12.048
22.
Tarodiya
,
R.
, and
Gandhi
,
B. K.
,
2019
, “
Experimental Investigation on Slurry Erosion Behavior of 304L Steel, Grey Cast Iron, and High Chromium White Cast Iron
,”
ASME J. Tribol.
,
141
(
9
), p.
091602
. 10.1115/1.4043903
23.
Huang
,
P.
,
Bardina
,
J.
, and
Coakley
,
T.
,
1997
, “Turbulence Modeling Validation, Testing, and Development,” Technical Report, NASA, Ames Research Center, CA.
24.
Duarte
,
C. A. R.
,
Souza
,
F. J. d.
, and
Santos
,
V. F. d.
,
2015
, “
Numerical Investigation of Mass Loading Effects on Elbow Erosion
,”
Powder Technol.
,
283
(
16
), pp.
593
606
. 10.1016/j.powtec.2015.06.021
25.
Wood
,
R. J. K.
,
Jones
,
T. F.
,
Ganeshalingam
,
J.
, and
Miles
,
N. J.
,
2004
, “
Comparison of Predicted and Experimental Erosion Estimates in Slurry Ducts
,”
Wear
,
256
(
9–10
), pp.
937
947
. 10.1016/j.wear.2003.09.002
26.
Wong
,
C. Y.
,
Solnordal
,
C.
,
Swallow
,
A.
, and
Wu
,
J.
,
2013
, “
Experimental and Computational Modelling of Solid Particle Erosion in a Pipe Annular Cavity
,”
Wear
,
303
(
1–2
), pp.
109
129
. 10.1016/j.wear.2013.02.018
27.
Morsi
,
S.
, and
Alexander
,
A.
,
1972
, “
An Investigation of Particle Trajectories in two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
. 10.1017/S0022112072001806
28.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
193
. 10.1016/S0043-1648(97)00217-2
29.
Chen
,
X.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2004
, “
Application and Experimental Validation of a Computational Fluid Dynamics (CFD)-Based Erosion Prediction Model in Elbows and Plugged Tees
,”
Comput. Fluids
,
33
(
10
), pp.
1251
1272
. 10.1016/j.compfluid.2004.02.003
30.
Vieira
,
R. E.
,
Mansouri
,
A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Experimental and Computational Study of Erosion in Elbows due to Sand Particles in air Flow
,”
Powder Technol.
,
288
(
2
), pp.
339
353
. 10.1016/j.powtec.2015.11.028
31.
Pei
,
J.
,
Lui
,
A.
,
Zhang
,
Q.
,
Xiong
,
T.
,
Jianga
,
P.
, and
Wei
,
W.
,
2018
, “
Numerical Investigation of the Maximum Erosion Zone in Elbows for Liquid-Particle Flow
,”
Powder Technol.
,
333
(
11
), pp.
47
59
. 10.1016/j.powtec.2018.04.001
32.
Sellgren
,
A.
,
Addie
,
G.
,
Visintainer
,
R.
, and
Pagalthivarthi
,
K.
,
2005
, “Prediction of Slurry Pump Component Wear and Cost,” WEDA XXV-TAMU, 37.
You do not currently have access to this content.