Abstract

Due to high efficiency, multigrid (MG) algorithms developed by Lubrecht and Venner or others have been widely applied to solve the Reynolds equation in lubrication simulations. However, such algorithms are complex in nature and in-depth understandings and further development are of interest. This work proposes a new restriction operator of pressure to simplify the relaxation of the load balance equation and constructs several new relaxation processes based on key options of relaxations when either pressures or changes of pressure are evaluated from the Reynolds equation. In addition, effects of cycle types, treatments of cavitation boundary, line-solvers, relaxation factors, and differential schemes are revealed. This paper further implements a mass conservation algorithm into the MG code in order to deal with micro-cavitations. Characteristics of film thickness, pressure, flow continuity, and residuals, resulting from smooth, wavy, or rough surfaces are discussed. Finally, the results from the last correction cycles at various levels are recommended to be used for better accuracy.

References

1.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
,
177
, pp.
157
234
. 10.1098/rstl.1886.0005
2.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
London
.
3.
Hamrock
,
B. J.
, and
Jacobson
,
B. O.
,
1984
, “
Elastohydrodynamic Lubrication of Line Contacts
,”
ASLE Trans.
,
27
(
4
), pp.
275
287
. 10.1080/05698198408981572
4.
Bissett
,
E. J.
, and
Glander
,
D. W.
,
1987
, “
A Highly Accurate Approach That Resolves the Pressure Spike of Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
110
(
2
), pp.
241
246
. 10.1115/1.3261592
5.
Chang
,
L.
,
Conry
,
T. F.
, and
Cusano
,
C.
,
1989
, “
An Efficient, Robust, Multi-level Computational Algorithm for Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
111
(
2
), pp.
193
199
. 10.1115/1.3261886
6.
Wu
,
S. R.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds-Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
. 10.1016/0020-7225(86)90032-7
7.
Yang
,
B.
, and
Laursen
,
T. A.
,
2009
, “
A Mortar-Finite Element Approach to Lubricated Contact Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
47–48
), pp.
3656
3669
. 10.1016/j.cma.2009.07.008
8.
Ahmed
,
S.
,
Goodyer
,
C. E.
, and
Jimack
,
P. K.
,
2014
, “
An Adaptive Finite Element Procedure for Fully-Coupled Point Contact Elastohydrodynamic Lubrication Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
282
, pp.
1
21
. 10.1016/j.cma.2014.08.026
9.
Hajishafiee
,
A.
,
Kadiric
,
A.
,
Ioannides
,
S.
, and
Dini
,
D.
,
2017
, “
A Coupled Finite-Volume CFD Solver for Two-Dimensional Elasto-hydrodynamic Lubrication Problems With Particular Application to Rolling Element Bearings
,”
Tribol. Int.
,
109
, pp.
258
273
. 10.1016/j.triboint.2016.12.046
10.
Zhu
,
D.
, and
Jane Wang
,
Q.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
. 10.1115/1.4004457
11.
Briggs
,
W. L.
,
Henson
,
V. E.
, and
McCormick
,
S. F.
,
1987
,
A Multigrid Tutorial
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
12.
Lubrecht
,
A. A.
,
Ten Napel
,
W. E.
, and
Bosma
,
R.
,
1986
, “
Multigrid, an Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
108
(
4
), pp.
551
556
. 10.1115/1.3261260
13.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multi-level Methods in Lubrication
,
Elsevier Science
,
New York
.
14.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
,
1991
, “
A Fast Solution of the Dry Contact Problem and the Associated Sub-surface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
(
1
), pp.
128
133
. 10.1115/1.2920577
15.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1
), pp.
101
111
. 10.1016/S0043-1648(00)00427-0
16.
Wang
,
Q.
,
Sun
,
L.
,
Zhang
,
X.
,
Liu
,
S.
, and
Zhu
,
D.
,
2020
, “
FFT-Based Methods for Computational Contact Mechanics
,”
Front. Mech. Eng.
,
6
, pp.
1
22
.
17.
Liu
,
S.
,
Qiu
,
L.
,
Wang
,
Z.
, and
Chen
,
X.
,
2020
, “
Influences of Iteration Details on Flow Continuities of Numerical Solutions to Isothermal Elastohydrodynamic Lubrication With Micro-cavitations
,”
ASME J. Tribol.
,
143
(
10
), p.
101601
. 10.1115/1.4049327
18.
Venner
,
C. H.
,
1991
,
Multilevel Solution of the EHL Line and Point Contact Problems
,
University of Twente
,
Enschede, The Netherlands
.
19.
Wang
,
J.
,
Qu
,
S.
, and
Yang
,
P.
,
2001
, “
Simplified Multigrid Technique for the Numerical Solution to the Steady-State and Transient EHL Line Contacts and the Arbitrary Entrainment EHL Point Contacts
,”
Tribol. Int.
,
34
(
3
), pp.
191
202
. 10.1016/S0301-679X(01)00020-2
20.
Goodyer
,
C. E.
,
Fairlie
,
R.
,
Berzins
,
M.
, and
Scales
,
L. E.
,
2000
, “
An In-depth Investigation of the Multigrid Approach to Steady and Transient EHL Problems
,”
Tribol. Ser.
,
38
, pp.
95
102
. 10.1016/S0167-8922(00)80115-7
21.
Zhu
,
D.
,
2007
, “
On Some Aspects of Numerical Solutions of Thin-Film and Mixed Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
221
(
5
), pp.
561
580
. 10.1243/13506501JET259
22.
Nurgat
,
E.
, and
Berzins
,
M.
,
1997
, “
A New Relaxation Scheme for Solving EHL Problems
,”
Tribol. Ser.
,
32
, pp.
125
133
. 10.1016/S0167-8922(08)70442-5
23.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings
,”
Tribol. Int.
,
94
, pp.
509
529
. 10.1016/j.triboint.2015.10.009
24.
Huang
,
P.
, and
Wen
,
S.
,
1992
, “
Study on Oil Film and Pressure Distribution of Micro-EHL
,”
ASME J. Tribol.
,
114
(
1
), pp.
42
46
. 10.1115/1.2920865
25.
Huang
,
P.
, and
Wen
,
S.
,
1993
, “
Sectional Micro-elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
115
(
1
), pp.
148
151
. 10.1115/1.2920968
26.
Kamamoto
,
S.
,
Sakuragi
,
M.
,
Fujimoto
,
K.
, and
Yamamoto
,
T.
,
1997
, “
Effect of Micro-cavitation on Oil Film Thickness and Pressure Distributions in Micro-EHL Line Contact
,”
Tribol. Ser.
,
32
, pp.
113
124
. 10.1016/S0167-8922(08)70441-3
27.
Wang
,
W.
,
Li
,
S.
,
Shen
,
D.
,
Zhang
,
S.
, and
Hu
,
Y. Z.
,
2012
, “
A Mixed Lubrication Model With Consideration of Starvation and Interasperity Cavitations
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
226
(
12
), pp.
1023
1038
. 10.1177/1350650112460830
28.
Pu
,
W.
,
Zhu
,
D.
, and
Wang
,
J.
,
2018
, “
A Starved Mixed Elastohydrodynamic Lubrication Model for the Prediction of Lubrication Performance, Friction and Flash Temperature With Arbitrary Entrainment Angle
,”
ASME J. Tribol.
,
140
(
3
), p.
031501
. 10.1115/1.4037844
29.
Morales-Espejel
,
G. E.
,
Dumont
,
M. L.
,
Lugt
,
P. M.
, and
Olver
,
A. V.
,
2005
, “
A Limiting Solution for the Dependence of Film Thickness on Velocity in EHL Contacts With Very Thin Films
,”
Tribol. Trans.
,
48
(
3
), pp.
317
327
. 10.1080/05698190590970444
30.
Ai
,
X.
,
1993
, “
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts with Rough Surfaces by Using Semi-system and Multigrid Methods
,”
Northwestern University
,
Evanston, IL
.
31.
Liu
,
Y.
,
Wang
,
Q. J.
,
Wang
,
W.
,
Hu
,
Y.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
. 10.1115/1.2194916
32.
Ai
,
X.
, and
Yu
,
H.
,
1988
, “
A Full Numerical Solution for General Transient Elastohydrodynamic Line Contacts and Its Application
,”
Wear
,
121
(
2
), pp.
143
159
. 10.1016/0043-1648(88)90039-7
33.
Tae-Jo
,
P.
, and
Kyung-Woong
,
K.
,
1990
, “
A Numerical Analysis of the Elastohydrodynamic Lubrication of Elliptical Contacts
,”
Wear
,
136
(
2
), pp.
299
312
. 10.1016/0043-1648(90)90153-2
34.
Pu
,
W.
,
Wang
,
J.
, and
Zhu
,
D.
,
2016
, “
Progressive Mesh Densification Method for Numerical Solution of Mixed Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
138
(
2
), p.
021502
. 10.1115/1.4031495
35.
Brandt
,
A.
,
1977
, “
Multi-level Adaptive Solutions to Boundary-Value Problems
,”
Math. Comput.
,
31
(
138
), pp.
333
390
. 10.1090/S0025-5718-1977-0431719-X
36.
Bayada
,
G.
,
Chambat
,
M.
, and
El Alaoui
,
M.
,
1990
, “
Variational Formulations and Finite Element Algorithms for Cavitation Problems
,”
ASME J. Tribol.
,
112
(
2
), pp.
398
403
. 10.1115/1.2920270
37.
Wijnant
,
Y. H.
,
1998
,
Contact Dynamics in the Field of Elastohydrodynamic Lubrication
,
University of Twente
,
Enschede, The Netherlands
.
38.
Damiens
,
B.
,
Venner
,
C. H.
,
Cann
,
P. M. E.
, and
Lubrecht
,
A. A.
,
2004
, “
Starved Lubrication of Elliptical EHD Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
105
111
. 10.1115/1.1631020
You do not currently have access to this content.