Abstract
This paper deals with friction forces in a linear-guideway type recirculating ball bearing (linear bearing) under grease lubrication. During the experiments, the friction force, temperature, and electric contact voltage of a grease lubricated linear bearing (test bearing) without seals were measured. Experimental results showed that the measured friction forces of the test bearing were fluctuated with the ball passage period. The measured time-average friction force FAVG (measured FAVG) was nearly constant when the grease filling rate x (=grease filling volume/internal space of the bearing) ≥0.13, while the measured FAVG decreased as x decreased when x < 0.13. In addition, the measured temperatures were almost constant, and the measured contact voltages indicated that the contacts of the balls and raceways were electrically insulated by the grease film. Next, the expressions of friction forces due to differential slip (FD), elastic hysteresis loss (FE), and rolling traction (FRT) were shown. The calculated FD + FE + FRT for the test bearing was almost equal to the measured FAVG around the grease filling rate of x = 0, while in cases where x > 0, the measured FAVG was greater than the calculated FD + FE + FRT. This means that when x > 0, an agitating resistance (FA) from the grease might cause the measured FAVG to be greater than the calculated FD + FE + FRT. Finally, an expression for the friction force of a linear bearing, FAVG = FD + FE + FRT + FA (which can estimate the measured ones) is proposed.