Abstract

Gear pumps are largely employed in aero-engine fuel systems to provide the combustor with fuel at adequate pressure and flowrate. The radial load applied on the gears, as a consequence of the pump pressure rise, is entirely supported by the hybrid journal bearings. Lubrication of these is accomplished using low viscosity aviation fuel, which makes the design and analysis of journal bearings particularly challenging. Furthermore, considering the operating conditions of these journal bearings, elastic deformations play a significant role on their performance and equilibrium location. A numerical model has been developed to support the analysis and future design of hybrid journal bearings for fuel pump applications. The primary objective of the tool is to characterize the equilibrium position of the journal during steady-state operation at part and full load, where the resultant elastic displacements are more significantly affecting the pressure distribution of the lubrication film. The developed method effectively combines Elrod’s cavitation algorithm with the dimensionless pressure definition known as the Vogelpohl parameter, resulting in a simple and robust methodology to characterize the pressure distribution within the lubricant for different bearing designs and operating conditions. Six different multidimensional root-finding solvers have been implemented and their performance evaluated against robustness, accuracy and computational speed requirements. Newton–Raphson based methods have shown promising tradeoffs for the problem at hand. Validation of the tool has been made comparing experimental film thickness measurements, performed on a fuel pump from a modern turbofan engine, with predicted data from the numerical model.

References

1.
Yates
,
M.
,
2003
, “
Lubrication of Aero-Engine Fuel Pump Journal Bearings
,”
Aeros. Trans. Syst.: Who Needs Oil?
,
35
(
3
), pp.
389
396
. Available via Institution of Mechanical Engineers (IMechE) Library Catalogue.
2.
Rowe
,
W. B.
,
1989
, “
Advances in Hydrostatic and Hybrid Bearing Technology
,”
J. Mech. Eng. Sci.
,
203
(
4
), pp.
225
242
.
3.
Garg
,
H. C.
,
Sharda
,
H. B.
, and
Kumarm
,
V.
,
2005
, “
On the Design and Development of Hybrid Journal Bearings: a Reviews
,”
Lubricat. Sci.
,
12
(
1
), pp.
1
19
.
4.
Rowe
,
W. B.
,
Xu
,
S. X.
,
Chong
,
F. S.
, and
Weston
,
W.
,
1982
, “
Hybrid Journal Bearings With Particular Reference to Hole-Entry Configurations
,”
Tribol. Int.
,
15
(
6
), pp.
339
348
.
5.
Rowe
,
W. B.
,
2012
,
Hydrostatic, Aerostatic and Hybrid Bearing Design
, 1st ed.,
Elsevier
,
Oxford, UK
.
6.
Habata
,
K.
,
1961
, “
Theoretical Pressure Distribution in Journal Bearings
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
497
506
.
7.
Vignolo
,
G. G.
,
Barila
,
D. O.
, and
Quinzani
,
L. M.
,
2011
, “
Approximate Analytical Solution to Reynolds Equation for Finite Length Journal Bearings
,”
Tribol. Int.
,
44
(
9
), pp.
1089
1099
.
8.
Sfyris
,
D.
, and
Chasalevris
,
A.
,
2012
, “
An Exact Analytical Solution of the Reynolds Equation for the Finite Journal Bearing Lubrication
,”
Tribol. Int.
,
55
(
11
), pp.
46
58
.
9.
Lehtovaara
,
A.
,
2007
, “
A Numerical Model for Hydrodynamic Lubrication of Journal Bearings With Axial Lubricant Supply Groove and Axially Variable Geometry
,”
Tribologia – Finnish J. Tribology
,
26
(
4
), pp.
3
14
.
10.
Zhou
,
W.
,
Wei
,
X.
,
Wang
,
L.
, and
Wu
,
G.
,
2017
, “
A Superlinear Iteration Method for Calculation of Finite Length Journal Bearing’s Static Equilibrium Position
,”
R. Soc.
,
4
(
5
), pp.
1
19
.
11.
Ighil
,
T. N.
,
Bounif
,
A.
, and
Maspeyrot
,
P.
,
2008
, “
Thermo-Hydrodynamic Study of the Journal Bearing Under Static Load
,”
J. Mech. Eng. Sci.
,
222
(
9
), pp.
1801
1809
.
12.
Linjamaa
,
A.
,
Lehtovaara
,
A.
,
Kallio
,
M.
, and
Söchting
,
S.
,
2016
, “
Modelling and Analysis of Elastic and Thermal Deformations of a Hydrodynamic Radial Journal Bearing
,”
Key. Eng. Mater.
,
674
, pp.
127
132
.
13.
Linjamaa
,
A.
,
Lehtovaara
,
A.
,
Larsson
,
R.
,
Kallio
,
M.
, and
Söchting
,
S.
,
2018
, “
Modelling and Analysis of Elastic and Thermal Deformations of a Hybrid Journal Bearing
,”
Tribol. Int.
,
118
(
2
), pp.
451
457
.
14.
Bonneau
,
D.
,
Fatu
,
A.
, and
Souchet
,
D.
,
2014
,
Thermo-Hydrodynamic Lubrication in Hydrodynamic Bearings
,
Wiley
,
Hoboken, NJ
.
15.
Hariharan
,
G.
, and
Pai
,
R.
,
2018
, “
Mathematical Formulation of a Modified Film Thickness Equation for Multipad Externally Adjustable Fluid Film Bearing
,”
Cogent Eng.
,
5
(
1
), pp.
1
15
.
16.
Bendaoud
,
N.
,
Mehala
,
K.
,
Youcefi
,
A.
, and
Fillon
,
M.
,
2012
, “
An Experimental and Numerical Investigation in Elastohydrodynamic Behaviour of a Plain Cylindrical Journal Bearing Heavily Loaded
,”
J. Eng. Tribology
,
226
(
10
), pp.
809
818
.
17.
Javorova
,
J.
,
Mazdrakova
,
A.
,
Andonov
,
I.
, and
Radulescu
,
A.
,
2016
, “
Analysis of HD Journal Bearings Considering Elastic Deformation and Non-Newtonian Rabinowitsch Fluid Model
,”
Tribology Indus.
,
38
(
2
), pp.
186
196
.
18.
Reynolds
,
O.
,
1886
, On the Theory of Lubrication and its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil.
19.
Hamrock
,
J. B.
,
1991
,
Fundamentals of Fluid Film Lubrication
,
NASA
,
Columbus, OH
.
20.
Sun
,
J.
,
Gui
,
C.
,
Li
,
Z.
, and
Li
,
Z.
,
2005
, “
Influence of Journal Misalignment Caused by Shaft Deformation Under Rotational Load on Performance of Journal Bearing
,”
J. Eng. Tribology
,
219
(
4
), pp.
275
283
.
21.
Frene
,
J.
,
Nicolas
,
D.
,
Degueurce
,
B.
,
Berthe
,
D.
, and
Godet
,
M.
,
1997
,
Hydrodynamic Lubrication - Tribology Series
, Vol.
33
,
Elsevier
,
Amsterdam, The Netherlands
.
22.
Profito
,
F. J.
,
2015
, “
On the Development of Advanced Techniques for Mixed-Elastohydrodynamic Lubrication Modelling of Journal and Sliding Bearing Systems
,” Ph.D. thesis,
University of São Paulo
,
São Paulo, Brazil
.
23.
Bhushan
,
B.
,
2001
,
Modern Tribology Handbook
,
Volume One: Principles of Tribology
, 1st ed.,
CRC Press
,
Columbus, OH
.
24.
Elrod
,
H. G.
, and
Adams
,
M. L.
,
1974
, “
A Computer Program for Cavitation and Starvation Problems
,”
Leeds-Lyon Symposium on Tribology: Cavitation and Related Phenomena in Lubrication
, pp.
37
41
.
25.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Tribol.
,
103
(
3
), pp.
350
354
.
26.
Vijayaraghavan Jr.
,
D.
, and
Keith
,
T. G.
,
1989
, “
Development and Evaluation of a Cavitation Algorithm
,”
Tribol. Trans.
,
32
(
2
), pp.
225
233
.
27.
Vijayaraghavan
,
D.
Jr
, and
Keith
,
T. G.
,
1990
, “
Grid Transformation and Adaption Techniques Applied in the Analysis of Cavitated Journal Bearings
,”
ASME J. Tribol.
,
112
(
1
), pp.
52
59
.
28.
Vijayaraghavan Jr
,
D.
, and
Keith
,
T. G.
,
1990
, “
An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
ASME J. Tribol.
,
112
(
1
), pp.
44
51
.
29.
Woods
,
C. M.
, and
Brewe
,
D. E.
,
1989
, “
The Solution of the Elrod Algorithm for a Dynamically Loaded Journal Bearing Using Multigrid Techniques
,”
ASME J. Tribol.
,
111
(
2
), pp.
302
308
.
30.
Braun
,
M. J.
, and
Hannon
,
W. M.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
J. Eng. Tribol.
,
224
(
9
), pp.
839
863
.
31.
Woloszynski
,
T.
,
Podsiadlo
,
P.
, and
Stachowiak
,
G. W.
,
2015
, “
Efficient Solution to the Cavitation Problem in Hydrodynamic Lubrication
,”
Tribology Lett.
,
18
(
58
), pp.
1
11
.
32.
Miraskari
,
M.
,
Hemmati
,
F.
,
Jalali
,
A.
,
Alqaradawi
,
M. Y.
, and
Gadala
,
M. S.
,
2017
, “
A Robust Modification to the Universal Cavitation Algorithm in Journal Bearings
,”
ASME J. Tribol.
,
139
(
3
), p.
031703
.
33.
Jakobsson
,
B.
, and
Floberg
,
L.
,
1957
,
The Finite Journal Bearing, Considering Vaporization (Transactions of Chalmers University of Technology)
, Vol.
190
,
Guthenberg
,
Sweden
, p.
308
.
34.
Olsson
,
K. O.
,
1965
,
Cavitation in Dynamically Loaded Bearing (Transactions of Chalmers University of Technology)
, Vol.
308
,
Guthenberg
,
Sweden
, p.
308
.
35.
Brewe
,
D. E.
,
1986
, “
Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
108
(
4
), pp.
628
637
.
36.
Kostreva
,
M. M.
,
1984
, “
Pressure Spikes and Stability Considerations in Elastohydrodynamic Lubrication Models
,”
ASME J. Tribol.
,
106
(
3
), pp.
386
393
.
37.
Hamrock
,
B. J.
,
Pan
,
P.
, and
Lee
,
R.-T.
,
1988
, “
Pressure Spikes in Elastohydrodynamically Lubricated Conjunctions
,”
ASME J. Tribol.
,
110
(
2
), pp.
279
284
.
38.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2014
,
Engineering Tribology
, 4th ed.,
Elsevier
,
Oxford, UK
.
39.
Elliott
,
T. W.
,
1989
, “
Highly Loaded Hybrid Journal Bearings
,”
Ph.D. thesis
,
Liverpool Polytechnic
.
40.
Ford
,
W.
,
2014
,
Numerical Linear Algebra with Applications: Using MATLAB®
,
Elsevier Science
,
Oxford, UK
.
41.
Dianat
,
S. A.
, and
Saber
,
E.
,
2017
,
Advanced Linear Algebra for Engineers with MATLAB®
,
CRC Press
,
Boca Raton, FL
.
42.
Massey
,
B. S.
, and
Ward-Smith
,
A. J.
,
2012
,
Mechanics of Fluids
, 9th ed.,
CRC Press
,
Boca Raton, FL
.
43.
MathWorks®
,
2020
. Optimization Toolbox™: User’s Guide (R2020b).
44.
Xue
,
D.
, and
Chen
,
Y.
,
2016
,
Scientific Computing with MATLAB®
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
45.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
.
46.
Thompson
,
M. K.
, and
Thompson
,
J. M.
,
2017
,
ANSYS Mechanical APDL for Finite Element Analysis
, 1st ed.,
Butterworth-Heinemann
,
Oxford, UK
.
47.
Coordinating Research Council Inc
,
2004
. Coordinating Support of Fuels and Lubricant Research and Development (R&D) 2. Delivery Order 0002: Handbook of Aviation Fuel Properties–2004, 3rd ed., Technical Report, ADA429439, CRC Inc, Alpharetta, GA.
48.
Harper
,
P.
,
Hollingsworth
,
B.
,
Dwyer-Joyce
,
R.
, and
Drinkwater
,
B.
,
2003
, “
Journal Bearing Oil Film Measurement Using Ultrasonic Reflection
,”
Tribology Seri.
,
41
, pp.
469
476
.
49.
Dwyer-Joyce
,
R.
,
Harper
,
P.
, and
Drinkwater
,
B.
,
2004
, “
A Method for the Measurement of Hydrodynamic Oil Films Using Ultrasonic Reflection
,”
Tribology Lett.
,
17
(
2
), pp.
337
348
.
50.
Hooke
,
C. J.
,
1990
, “
The Influence of Piezoviscosity on the Minimum Film Thickness in Heavily Loaded Elastohydrodynamic Point Contacts
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
,
204
(
2
), pp.
117
125
.
51.
D’Agostino
,
V.
,
Petrone
,
V.
, and
Senatore
,
A.
,
2012
, “
The Influence of Piezo-Viscous Lubricants on EHL Line and Point Contact Problems
,”
ASME 2012 International Mechanical Engineering Congress and Exposition
, pp.
1021
1031
.
52.
So
,
B. Y. C.
, and
Klaus
,
E. E.
,
1980
, “
Viscosity-Pressure Correlation of Liquids
,”
ASLE Trans.
,
23
(
4
), pp.
409
421
.
53.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization (Springer Series in Operations Research and Financial Engineering)
, 2nd ed.,
Springer
,
New York
.
54.
Moré
,
J. J.
,
1978
, “
The Levenberg-Marquardt Algorithm: Implementation and Theory
,”
Numerical Analysis
,
G. A.
Watson
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
105
116
.
55.
Soleymani
,
F.
, and
Sharifi
,
M.
,
2011
, “
On a General Efficient Class of Four-Step Root-Finding Methods
,”
Int. J. Math. Comput. Simul.
,
5
(
3
), pp.
181
189
.
56.
Burden
,
R. L.
, and
Faires
,
J. D.
,
2010
,
Numerical Analysis
, 9th ed.,
Brooks Cole
,
Boston, MA
.
57.
Andrés
,
L. S.
,
2006
, Hydrodynamic Fluid Film Bearings and Their Effect on the Stability of Rotating Machinery, Technical Report, Texas A&M University.
58.
Barrett
,
L. E.
,
Allaire
,
P. E.
, and
Gunter
,
E. J.
,
1980
, “
A Finite Length Bearing Correction Factor for Short Bearing Theory
,”
ASME J. Tribol.
,
102
(
3
), pp.
283
287
.
You do not currently have access to this content.