Abstract

This current study proposed a new computationally efficient and comparatively accurate algorithm for calculating both static and dynamic coefficients of friction from high-frequency data. Its scope embraced an application in a real-time friction-based system, such as active braking safety systems in automobile industries. The signal sources were from a heavy-duty reciprocating dry sliding wear test platform, focused on experimental data related to friction induced by stick-slip phenomena. The test specimen was a polytetrafluoroethylene (PTFE)-coated basalt/vinyl ester composite material, tested at a large scale. The algorithm was primarily aimed to provide scalability for processing significantly large tribological data in a real-time. Besides a computational efficiency, the proposed method adopted to evaluate both static and dynamic coefficients of friction using the statistical approach exhibited a greater accuracy and reliability when compared with the extant models. The result showed that the proposed method reduced the computation time of processing and reduced the variation of the absolute values of both static and dynamic frictions. However, the variation of dynamic friction was later increased at a particular threshold, based on the test duration.

References

1.
Feeny
,
B.
,
Guran
,
A.
,
Hinrichs
,
N.
, and
Popp
,
K.
,
1998
, “
A Historical Review on Dry Friction and Stick-Slip Phenomena
,”
ASME Appl. Mech. Rev.
,
51
(
5
), pp.
321
341
.
2.
Gao
,
C.
,
Kuhlmann-Wilsdorf
,
D.
, and
Makel
,
D. D.
,
1993
, “
Fundamentals of Stick-Slip
,”
Wear
,
162
, pp.
1139
1149
.
3.
Awrejcewicz
,
J.
, and
Olejnik
,
P.
,
2007
, “
Occurrence of Stick-Slip Phenomenon
,”
J. Theor. Appl. Mech.
,
45
(
1
), pp.
33
40
.
4.
Pratt
,
T. K.
, and
Williams
,
R.
,
1981
, “
Non-Linear Analysis of Stick/Slip Motion
,”
J. Sound Vib.
,
74
(
4
), pp.
531
542
.
5.
Gao
,
C.
,
Kuhlmann-Wilsdorf
,
D.
, and
Makel
,
D. D.
,
1994
, “
The Dynamic Analysis of Stick-Slip Motion
,”
Wear
,
173
(
1–2
), pp.
1
12
.
6.
Real
,
F. F.
,
Lobo
,
D. M.
,
Ritto
,
T. G.
, and
Pinto
,
F. A. N. C.
,
2018
, “
Experimental Analysis of Stick-Slip in Drilling Dynamics in a Laboratory Test-Rig
,”
J. Pet. Sci. Eng.
,
170
, pp.
755
762
.
7.
Dong
,
C.
,
Yuan
,
C.
,
Bai
,
X.
,
Qin
,
H.
, and
Yan
,
X.
,
2017
, “
Investigating Relationship Between Deformation Behaviours and Stick-Slip Phenomena of Polymer Material
,”
Wear
,
376–377
, pp.
1333
1338
.
8.
Viswanathan
,
K.
, and
Sundaram
,
N. K.
,
2017
, “
Distinct Stick-Slip Modes in Adhesive Polymer Interfaces
,”
Wear
,
376–377
, pp.
1271
1278
.
9.
Renaud
,
F.
,
Chevallier
,
G.
,
Dion
,
J. L.
, and
Taudire
,
G.
,
2012
, “
Motion Capture of a Pad Measured With Accelerometers During Squeal Noise in a Real Brake System
,”
Mech. Syst. Signal Process.
,
33
, pp.
155
166
.
10.
Juel Thomsen
,
J.
, and
Fidlin
,
A.
,
2003
, “
Analytical Approximations for Stick-Slip Vibration Amplitudes
,”
Int. J. Non. Linear. Mech.
,
38
(
3
), pp.
389
403
.
11.
Lima
,
R.
, and
Sampaio
,
R.
,
2017
, “
Construction of a Statistical Model for the Dynamics of a Base-Driven Stick-Slip Oscillator
,”
Mech. Syst. Signal Process.
,
91
, pp.
157
166
.
12.
Bhattacharyya
,
P.
,
Sengupta
,
D.
, and
Mukhopadhyay
,
S.
,
2007
, “
Cutting Force-Based Real-Time Estimation of Tool Wear in Face Milling Using a Combination of Signal Processing Techniques
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2665
2683
.
13.
Kong
,
D.
,
Chen
,
Y.
, and
Li
,
N.
,
2018
, “
Gaussian Process Regression for Tool Wear Prediction
,”
Mech. Syst. Signal Process.
,
104
, pp.
556
574
.
14.
Neis
,
P. D.
,
Ferreira
,
N. F.
,
Matoso
,
L. T.
,
Masotti
,
D.
, and
Poletto
,
J. C.
,
2015
, “
Definition of a Suitable Parameter for Characterizing Creep-Groan Propensity in Brake Pads, SAE Technical Paper
,”
Presented in 12th SAE Brazil International Brake Colloquium and Engineering Display
,
Brazil, 2015
.
15.
Neis
,
P. D.
,
Ferreira
,
N. F.
,
Poletto
,
J. C.
,
Matozo
,
L. T.
, and
Masotti
,
D.
,
2016
, “
Quantification of Brake Creep Groan in Vehicle Tests and its Relation With Stick–Slip Obtained in Laboratory Tests
,”
J. Sound Vib.
,
369
, pp.
63
76
.
16.
Masotti
,
D.
,
Neis
,
P.
,
Ferreira
,
N.
,
Gomes
,
K.
,
Poletto
,
J.
, and
Matozo
,
L.
,
2015
, “
Experimental Evaluation of Surface Morphology Characteristics During Stick-Slip Process at Low Speed Sliding Test
,”
SAE Int. J. Passeng. Cars—Mech. Syst.
,
7
, pp.
1266
1274
.
17.
Martinez
,
K.
,
Hart
,
J. K.
,
Basford
,
P. J.
,
Bragg
,
G. M.
,
Ward
,
T.
, and
Young
,
D. S.
,
2017
, “
A Geophone Wireless Sensor Network for Investigating Glacier Stick-Slip Motion
,”
Comput. Geosci.
,
105
, pp.
103
112
.
18.
Snr
,
D. E. D.
,
2000
, “
Sensor Signals for Tool-Wear Monitoring in Metal Cutting Operations—A Review of Methods
,”
Int. J. Mach. Tools Manufac.
,
40
(
8
), pp.
1073
1098
.
19.
Boud
,
F.
, and
Gindy
,
N. N. Z.
,
2008
, “
Application of Multi-Sensor Signals for Monitoring Tool/Workpiece Condition in Broaching
,”
Int. J. Comput. Integr. Manuf.
,
21
(
6
), pp.
715
729
.
20.
Chung
,
K. T.
, and
Geddam
,
A.
,
2003
, “
A Multi-Sensor Approach to the Monitoring of End Milling Operations
,”
J. Mater. Proc. Technol.
,
139
(
1–3
), pp.
15
20
.
21.
Segreto
,
T.
,
Simeone
,
A.
, and
Teti
,
R.
,
2013
, “
Multiple Sensor Monitoring in Nickel Alloy Turning for Tool Wear Assessment via Sensor Fusion
,”
Proc. CIRP
,
12
, pp.
85
90
.
22.
Bonny
,
K.
,
De Baets
,
P.
,
Vleugels
,
J.
,
Huang
,
S.
, and
Lauwers
,
B.
,
2008
, “
Dry Reciprocating Sliding Friction and Wear Response of WC–Ni Cemented Carbides
,”
Tribol. Lett.
,
31
(
3
), p.
199
.
23.
Subramanian
,
K.
,
Nagarajan
,
R.
,
Baets
,
P. D.
,
Subramaniam
,
S.
,
Thangiah
,
W.
, and
Sukumaran
,
J.
,
2016
, “
Eco-Friendly Mono-Layered PTFE Blended Polymer Composites for Dry Sliding Tribo—Systems
,”
Tribol. Int.
,
102
, pp.
569
579
.
24.
Guo
,
K.
, and
Chan
,
J.
,
2020
, “
Bernstein-Bézier Weight-Adjusted Discontinuous Galerkin Methods for Wave Propagation in Heterogeneous Media
,”
J. Comput. Phys.
,
400
, p.
108971
.
You do not currently have access to this content.