Abstract

The third particle occurred at the interface of contacting surfaces is common situations in relative motion part. This study involved developing an analysis framework to investigate the contact characteristics in the full range of 3-body mixed lubrication. Conventional 2-body mixed lubrication is a special case of 3-body mixed lubrication analysis with particle size of zero. This study revealed that the values of real contact area, film thickness, contact mode, and the solid contact load in 3-body contact were larger than those in ideal 2-body contact in mixed lubrication, and they increased with an increasing particle size or density under the study conditions. The initial stages and transition processes of four types of 3-body contact modes under mixed lubrication were significantly different for different particle sizes and densities. The size of the third particle increased the values of both minimum and maximum values, λmin and λmax, of film parameter in the mixed lubrication regime. The particle density did not have a significant effect on the λmax value in mixed lubrication. Higher particle density led to a larger λmin value in mixed lubrication. The conventional film parameter, λ, was not a sufficient indicator of the different lubrication regimes in 3-body contact.

References

1.
Godet
,
M.
,
1984
, “
The Third-Body Approach: A Mechanical View of Wear
,”
Wear
,
100
(
1–3
), pp.
437
452
.
2.
Godet
,
M.
,
1990
, “
Third-Bodies in Tribology
,”
Wear
,
136
(
1
), pp.
29
45
.
3.
Akchurin
,
A.
,
Bosman
,
R.
, and
Lugt
,
P. M.
,
2017
, “
Generation of Wear Particles and Running-in in Mixed Lubricated Sliding Contacts During
,”
Tribol. Int.
,
110
(
1
), pp.
201
208
.
4.
Aghababaei
,
R.
,
Warner
,
D. H.
, and
Molinari
,
J. F.
,
2017
, “
On the Debris-Level Origins of Adhesive Wear
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
30
), pp.
7935
7940
.
5.
Bulsara
,
V. H.
,
Ahn
,
Y.
,
Chandraswkar
,
S.
, and
Farris
,
T. N.
,
1997
, “
Polishing and Lapping Temperatures
,”
ASME J. Tribol.
,
119
(
1
), pp.
163
170
.
6.
Pezdirnik
,
J.
,
Podgornik
,
B.
,
Vizintin
,
J.
,
Kalin
,
M.
, and
Vodopivec
,
F.
,
1996
,
The Third Body Concept: Interpretation of Tribological Phenomena
,
D.
Dowson
,
C. M.
Taylor
,
T. H. C.
Childs
,
G.
Dalmaz
,
Y.
Berthier
,
L.
Flamand
,
J. M.
Georges
, and
A. A.
Lubrecht
, eds.,
Elsevier Science Publishers
,
Amsterdam, The Netherlands
, pp.
257
270
.
7.
Su
,
L. L.
,
Gao
,
F.
, and
Han
,
X. M.
,
2015
, “
Effect of Copper Powder Third Body on Tribological Property of Copper-Based Friction Materials
,”
Tribol. Int.
,
90
(
1
), pp.
420
425
.
8.
Bhaumik
,
S.
,
Maggirwar
,
R.
,
Datta
,
S.
, and
Pathaket
,
S. D.
,
2018
, “
Analyses of Anti-Wear and Extreme Pressure Properties of Castor Oil With Zinc Oxide Nano Friction Modifiers
,”
Appl. Surf. Sci.
,
449
(
1
), pp.
277
286
.
9.
Ali
,
M. K. A.
,
Hou
,
X.
,
Mai
,
L.
,
Chen
,
B.
,
Turksson
,
R. F.
, and
Cai
,
Q.
,
2016
, “
Reducing Frictional Power Losses and Improving the Scuffing Resistance in Automotive Engines Using Hybrid Nanomaterials as Nano-Lubricant Additives
,”
Wear
,
364–365
(
1
), pp.
207
281
.
10.
Maru
,
M. M.
,
Castillo
,
R. S.
, and
Padovese
,
L. R.
,
2007
, “
Study of Solid Contamination in Ball Bearings Through Vibration and Wear Analysis
,”
Tribol. Int.
,
40
(
3
), pp.
433
440
.
11.
Stathis
,
A.
,
Costopoulos
,
T.
,
Koulocheris
,
D.
, and
Raptis
,
K.
,
2014
, “
The Adverse Effect of Steel Particle Contaminants on Fatigue Life of Grease Lubricated Ball Bearings
,”
Am. J. Appl. Sci.
,
11
(
9
), pp.
1530
1541
.
12.
Nawale
,
S. S.
, and
Kulkarm
,
P. D.
,
2017
, “
Analysis of Effect of Solid Contaminant in Lubrication on Vibration Response of Ball Bearing
,”
Int. J. Innov. Res. Sci. Eng. Technol.
,
6
(
6
), pp.
10429
10436
.
13.
Yu
,
R.
,
Liu
,
J.
, and
Zhou
,
Y.
,
2019
, “
Experimental Study on Tribological Property of MoS2 Nanoparticle in Castor Oil
,”
ASME J. Tribol.
,
141
(
10
), p.
102001
.
14.
Kim
,
S. T.
,
Woo
,
J. Y.
, and
Lee
,
Y. Z.
,
2016
, “
Friction, Wear, and Scuffing Characteristics of Marine Engine Lubricants With Nanodiamond Particles
,”
Tribol. Trans.
,
59
(
6
), pp.
1098
1103
.
15.
Li
,
H.
,
Yagi
,
K.
,
Sugimura
,
J.
,
Kajita
,
S.
, and
Shinyoshi
,
T.
,
2013
, “
Role of Wear Particles in Scuffing Initiation
,”
Tribol. Online
,
8
(
5
), pp.
285
294
.
16.
Kattelus
,
J.
,
Miettinen
,
J.
, and
Lehtovaara
,
A.
,
2018
, “
Detection of Gear Pitting Failure Progression With On-Line Particle Monitoring
,”
Tribol. Int.
,
118
(
1
), pp.
458
464
.
17.
Wu
,
H. W.
,
Chen
,
Y. Y.
, and
Horng
,
J. H.
,
2015
, “
Contact Temperature Under Three-Body Dry Friction Conditions
,”
Wear
,
330–331
(
1
), pp.
85
92
.
18.
Horng
,
J. H.
,
Wei
,
C. C.
,
Tsai
,
H. J.
, and
Shiu
,
B. C.
,
2009
, “
A Study of Surface Friction and Particle Friction Between Rough Surfaces
,”
Wear
,
267
(
5–8
), pp.
1257
1263
.
19.
Horng
,
J. H.
,
Chen
,
Y. Y.
,
Yu
,
C. C.
, and
Lin
,
G. L.
,
2019
, “
Three-Body Lubrication Model and Its Application
,”
IndiaTrib—2019
,
Bangalore, India
,
Dec. 1–4
.
20.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Poon
,
S. Y.
,
1972
, “
A Simple Theory of Asperity Contacts in Elastohydrodynamic Lubrication
,”
Wear
,
19
(
1
), pp.
91
108
.
21.
Greenwood
,
J. A.
, and
Willamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surface
,”
Proc. Roy. Soc. Lond. A
,
295
(
1442
), pp.
300
319
.
22.
Liu
,
Z.
, and
Gangopadhyay
,
A.
,
2016
, “
Friction Reduction in Lubricated Rough Contacts: Numerical and Experimental Studies
,”
ASME J. Tribol.
,
138
(
2
), p.
021506
.
23.
Chen
,
W.
, and
Engel
,
P.
,
1972
, “
Impact and Contact Stress Analysis in Multilayer Media
,”
Int. J. Solids Struct.
,
8
(
11
), pp.
1257
1281
.
24.
Nijenbanning
,
G.
,
Venner
,
C. H.
, and
Moes
,
H.
,
1994
, “
Film Thickness in Elastohydrodynamically Lubricated Elliptic Contacts
,”
Wear
,
176
(
2
), pp.
217
229
.
25.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011503
.
26.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2014
, “
Mixed Elastohydrodynamic Lubrication Line-Contact Formulas With Different Surface Patterns
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
228
(
8
), pp.
849
859
.
27.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2014
, “
Theoretical and Experimental Investigation of Traction Coefficient in Line-Contact EHL of Rough Surfaces
,”
Tribol. Int.
,
70
(
1
), pp.
179
189
.
28.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
29.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
30.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
On the Effect of Surface Roughness in Point-Contact EHL: Formulas for Film Thickness and Asperity Load
,”
Tribol. Int.
,
82
(
A
), pp.
228
244
.
31.
Dobrica
,
M. B.
,
Fillon
,
M.
, and
Maspeyroy
,
P.
,
2008
, “
Influence of Mixed-Lubrication and Rough Elastic-Plastic Contact on the Performance of Small Fluid Film Bearings
,”
STLE Tribol. Trans.
,
51
(
6
), pp.
699
717
.
32.
Dobrica
,
M. B.
,
Fillon
,
M.
, and
Maspeyroy
,
P.
,
2006
, “
Mixed Elastohydrodynamic Lubrication in a Partial Journal Bearing—Comparison Between Deterministic and Stochastic Models
,”
ASME J. Tribol.
,
128
(
4
), pp.
778
788
.
33.
Zhu
,
D.
, and
Wang
,
Q. J.
,
2013
, “
On the Lambda Ratio Range of Mixed Lubrication
,”
Proc. Inst. Mech. Eng. J-J. Eng.
,
226
(
12
), pp.
1010
1022
.
34.
Zhu
,
D.
, and
Wang
,
Q. J.
,
2013
, “
Effect of Roughness Orientation on the Elastohydrodynamic Lubrication Film Thickness
,”
ASME J. Tribol.
,
135
(
3
), p.
031501
.
35.
Azam
,
A.
,
Dorgham
,
A.
,
Morina
,
A.
,
Neville
,
A.
, and
Wilson
,
C. T.
,
2019
, “
A Simple Deterministic Plastoelastohydrodynamic Lubrication (PEHL) Model in Mixed Lubrication
,”
Tribol. Int.
,
131
(
1
), pp.
520
529
.
36.
Zapletal
,
T.
,
Sperka
,
P.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2020
, “
On the Relation Between Friction Increase and Grease Thickener Entraining on a Border of Mixed EHL Lubrication
,”
Lubricants
,
8
(
2
), pp.
1
11
.
37.
Greenwood
,
J. A.
,
2020
, “
Metal Transfer and Wear
,”
Front. Mech. Eng.
,
6
(
62
), pp.
1
6
.
38.
Zhu
,
D.
,
Wang
,
J.
,
Ren
,
N.
, and
Wang
,
Q. J.
,
2012
, “
Mixed Elastohydrodynamic Lubrication in Finite Roller Contacts Involving Realistic Geometry and Surface Roughness
,”
ASME J. Tribol. Trans.
,
134
(
1
), p.
011504
.
39.
Horng
,
J. H.
,
Jeng
,
Y. R.
, and
Chen
,
C. L.
,
2004
, “
A Model for Temperature Rise of Polishing Process Considering Effects of Polishing Pad and Abrasive
,”
ASME J. Tribol.
,
126
(
3
), pp.
422
429
.
40.
Pullen
,
J.
, and
Williamson
,
J. B. P.
,
1972
, “
On the Plastic Contact of Rough Surface
,”
Proc. Roy. Soc. Lond. A
,
327
(
1569
), pp.
157
173
.
41.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surface
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
42.
Horng
,
J. H.
,
1998
, “
An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surface
,”
ASME J. Tribol.
,
120
(
1
), pp.
82
88
.
43.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
2001
, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness
,”
Tribol. Trans.
,
44
(
3
), pp.
383
390
.
44.
Horng
,
J. H.
,
Chern
,
S. Y.
,
Li
,
C. L.
, and
Chen
,
Y. Y.
,
2017
, “
Surface Temperature and Wear Particle Analysis of Vertical Motion Double-Nut Ball Screws
,”
Ind. Lubr. Tribol.
,
69
(
6
), pp.
952
962
.
45.
Spikes
,
H. A.
,
2006
, “
Sixty Years of EHL
,”
Lubr. Sci.
,
18
(
4
), pp.
265
291
.
You do not currently have access to this content.